Research    Publications    Funding    Professor    People    Course
   korean

Jun Suk Kim, Sungkil Lee, Min Young Chung

IEEE Trans. Vehicular Technology, 66(7), 6280–6290, 2017.
Abstract
In order to facilitate low-cost network connection of many devices, machine-type communication (MTC) has evolved to low-cost MTC (LC-MTC) in the third-generation partnership project (3GPP) standard. LC-MTC should be able to effectively handle intensive accesses through multiple narrow-band (NB) random-access channels (RACHs) assigned within the bandwidth of a long-term evolution (LTE) system. As the number of MTC devices and their congestion rapidly increase, the random-access scheme for LC-MTC RACH needs to be improved. This paper presents a novel random-access scheme that introduces virtual preambles of LC-MTC devices and associates them with RACH indices to effectively discern LC-MTC devices. In comparison to the sole use of preambles, our scheme allows an LC-MTC device to better choose a unique virtual preamble. Thereby, the probability of successful accesses of LC-MTC devices increases in contention-based random-access environments. We experimentally assessed our scheme and the results show that our scheme performs better than the existing preamble-based scheme in terms of collision probability, access delay, and access blocking probability.
Paper preprints, slides, additional videos, GitHub, and Google Scholar
* Copyright Disclaimer: paper preprints in this page are provided only for personal academic uses, and not for redistribution.
Bibliography
@article{kim17:rasmc, title={{Efficient Random-Access Scheme for Massive Connectivity in 3GPP Low-Cost Machine-Type Communications}}, author={Jun Suk Kim and Sungkil Lee and Min Young Chung}, journal={{IEEE Trans. Vehicular Technology}}, volume={66}, number={7}, pages={6280--6290}, year={2017} }




27336, College of Software, Sungkyunkwan University, Tel. +82 31-299-4917, Seobu-ro 2066, Jangan-gu, Suwon, 16419, South Korea
Campus map (how to reach CGLab)