Research    Publications    Funding    Professor    People    Course

Euijai Ahn, Sungkil Lee, and Gerard Jounghyun Kim

Springer Virtual Reality, 22(3), 245–262, 2018.
Augmented reality (AR) augments virtual information over the real-world medium and is emerging as an important type of an information visualization technique. As such, the visibility and readability of the augmented information must be as high as possible amidst the dynamically changing real-world surrounding and background. In this work, we present a technique based on image saliency analysis to improve the conspicuity of the foreground augmentation to the background real-world medium by adjusting the local brightness contrast. The proposed technique is implemented on a mobile platform considering the usage nature of AR. The saliency computation is carried out for the augmented object’s representative color rather than all the pixels, and searching and adjusting over only a discrete number of brightness levels to produce the highest contrast saliency, thereby making real-time computation possible. While the resulting imagery may not be optimal due to such a simplification, our tests showed that the visibility was still significantly improved without much difference to the optimal ground truth in terms of correctly perceiving and recognizing the augmented information. In addition, we also present another experiment that explores in what fashion the proposed algorithm can be applied in actual AR applications. The results suggested that the users clearly preferred the automatic contrast modulation upon large movements in the scenery.
@ARTICLE{ahn18:salc, title={{Real-time adjustment of contrast saliency for improved information visibility in mobile augmented reality}}, author={Euijai Ahn and Sungkil Lee and Gerard Jounghyun Kim}, journal={{Springer Virtual Reality}}, volume={22}, number={3}, pages={245--262}, year={2018} }

27336, College of Software, Sungkyunkwan University, Tel. +82 31-299-4917, Seobu-ro 2066, Jangan-gu, Suwon, 16419, South Korea
Campus map (how to reach CGLab)