Master’s Thesis

Road Scene Image Translation from Day to Night using Semantic Segmentation

Seung Youp Baek

Department of Computer Science and Engineering
The Graduate School
Sungkyunkwan University
Master’s Thesis

Road Scene Image Translation from Day to Night using Semantic Segmentation

Seung Youp Baek

Department of Computer Science and Engineering
The Graduate School
Sungkyunkwan University
Road Scene Image Translation from Day to Night using Semantic Segmentation

Seung Youp Baek

A Master's Thesis Submitted to the Department of Computer Science and Engineering and the Graduate School of Sungkyunkwan University in partial fulfillment of the requirements for the degree of Master of Science in Engineering

October 2020

Supervised by
Sungkil Lee
Major Advisor
This certifies that the Master's Thesis of Seung Youp Baek is approved.

Committee Chairman :

Committee Member :

Major Advisor :

The Graduate School
Sungkyunkwan University
December 2020
Table of Contents

List of Tables · · · · · · · · · · · · · · · · · · · iii
List of Figures · · · · · · · · · · · · · · · · · · · iii
List of Equations · · · · · · · · · · · · · · · · · · · iv
Abstract · v
1. Introduction · · · · · · · · · · · · · · · · · · · 1
2. Related Work · · · · · · · · · · · · · · · · · · · 4
3. Framework · 7
3.1 Brightness Adjustment · · · · · · · · · · · · · · · 8
3.2 Coarse Depth Estimation · · · · · · · · · · · · · 13
 A. Lane Marking Segmentation · · · · · · · · · · · 13
 B. Edge Detection · · · · · · · · · · · · · · · · · · · 15
 C. Line Detection · · · · · · · · · · · · · · · · · · · 17
 D. Vanishing Point Detection · · · · · · · · · · · · · 18
 E. Coarse Depth Generation · · · · · · · · · · · · · 19
3.3 Light Map Generation · · · · · · · · · · · · · 20
 A. Bloom Effect · · · · · · · · · · · · · · · · · · · 21
 B. Random Light Splatting · · · · · · · · · · · · · 22
3.4 Composition · · · · · · · · · · · · · · · · · · · 23
3.5 Sensor Noise · · · · · · · · · · · · · · · · · · · 25
 A. Random Noise · · · · · · · · · · · · · · · · · · · 25
 B. Fixed Patter Noise · · · · · · · · · · · · · · · · · · · 28
 C. Color Filter Array and Demosaicing · · · · · · · · · · · 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. GPU-based Pseudo Random Noise Generation</td>
<td>31</td>
</tr>
<tr>
<td>4. Results</td>
<td>35</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>44</td>
</tr>
<tr>
<td>6. Limitation and Future Work</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>47</td>
</tr>
<tr>
<td>Korean Abstract</td>
<td>53</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>10</td>
</tr>
<tr>
<td>Table 2</td>
<td>33</td>
</tr>
<tr>
<td>Table 3</td>
<td>34</td>
</tr>
<tr>
<td>Table 4</td>
<td>41</td>
</tr>
<tr>
<td>Table 5</td>
<td>43</td>
</tr>
<tr>
<td>Table 6</td>
<td>43</td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>12</td>
</tr>
<tr>
<td>Figure 5</td>
<td>14</td>
</tr>
<tr>
<td>Figure 6</td>
<td>16</td>
</tr>
<tr>
<td>Figure 7</td>
<td>17</td>
</tr>
<tr>
<td>Figure 8</td>
<td>18</td>
</tr>
<tr>
<td>Figure 9</td>
<td>19</td>
</tr>
<tr>
<td>Figure 10</td>
<td>23</td>
</tr>
<tr>
<td>Figure 11</td>
<td>24</td>
</tr>
<tr>
<td>Figure 12</td>
<td>29</td>
</tr>
<tr>
<td>Figure 13</td>
<td>30</td>
</tr>
</tbody>
</table>
List of Equations

Equation 1. .. 26
Equation 2. .. 26
Equation 3. .. 27
Equation 4. .. 27
Equation 5. .. 27
Equation 6. .. 28
Equation 7. .. 28
Equation 8. .. 28
Abstract

Road Scene Image Translation from Day to Night using Semantic Segmentation

The day-to-night image translation is a task where the goal is to translate the day-time domain image to the night-time domain image. Recent studies proposed learning-based methods to translate the day-time road scene dataset into the night-time, the improvements are in progress. However, the learning-based methods in general are often unpredictable, it is difficult to obtain the desired results. Also, datasets with preferred annotations may insufficient or unavailable to use. Hence, in this thesis, we propose a semi-automatic framework for the day-to-night image translation of road scene images. Unlike the previous approaches, we do not perform learning to translate the image. Instead, we utilize the semantic annotations from the semantic segmentation to perceive the given scene. With the help of semantic annotation, per-element translations and adjustments are performed to generate a more plausible night-time image. Then, the feature extractions such as coarse depth estimation and lighting estimation are performed where semantic annotations are utilized to avoid unintended translations and enhance the overall robustness. Lastly, the image sensor noises are modeled and simulated to obtain even more plausible results. As a consequence, the experimental results of our framework show that we can synthesize more
plausible night-time road scene images not only in higher-resolution but also avoid random artifacts, in contrast to previous approaches. Moreover, most part of our framework operates in GPU; the results can be obtained nearly in real-time, which shows viable extension for a dataset generation.

Keywords: image processing, computational photography, day-to-night, semantic segmentation, GPU
Chapter 1. Introduction

Image-to-image translation is the problem posed in the computer graphics and the computer vision, where the main task is to generate a new image from the given image by interpreting and mapping the two distinct domains and transferring the features one to another.

In the past, methods have been proposed for the tasks such as denoising [1], colorization of gray image [2], color transfer [3, 4], and image segmentation [5], where the features were translated from one to another. Many learning-based methods have been proposed using the Generative Adversarial Networks (GANs) [6]; demonstrated astonishing results for the many different tasks in translating the images with substantial progressions. Isola et al. [7] approached in GAN-based method and demonstrated results in many different tasks, such as labels-to-street, black-and-white-to-color, day-to-night, and more. The CycleGAN [8] proposed a method to train the network without paired image sets, in contrast to the previous approaches, shown further improvements in different applications. Likewise, many learning-based methods have been proposed for various tasks [9–12], but image translation between the day and night time domain has not been tackled much yet, compared to the other tasks. Recently several GAN-based methods were proposed to translate the domain between the day and night images, especially for the road scene datasets, and the improvements are in progress [13–19].
Despite the successful progressions shown by the learning-based methods for the day-to-night image translation, yet there are limitations. The learning-based methods, in general, are difficult to obtain the desired output as it is unpredictable and difficult to modify. Also, the output may include artifacts on new scenes. Moreover, obtaining datasets for training with required annotations may difficult; custom datasets are required, which is costly in general. Furthermore, translating lightings between the two domains is challenging, artifacts can be easily produced and it is difficult to accurately estimate the features. Rather than the day-time image, processing a night-time image tends to be a more difficult task. This is due to the lack of lightings and illuminations in the night-scene, where the scene is much darker; it is difficult to perceive the image and acquire the information. For such reasons, image translation between the day and night is considered one of the difficult tasks to perform, and often only rely on learning-based methods.

In this thesis, we present a framework that translates the day-time domain road scene image to the night-time domain image, semi-automatically. Unlike the previous studies, we do not perform learning to prevent previous issues. Instead, we design our framework to utilize the semantic annotations from the semantic segmentation. By using the semantic annotations, the scene can be perceived; hence we only focus on day-to-night image translation as the semantic segmentation for night-time images is yet either coarse or too erroneous, in contrast to the day-time image. By recognizing each scene element, per-element translation gets feasible; more plausible and adjustable results can be obtained. Moreover, we operate most of our framework in GPU, further improvements in performances are made.
To perform a day-to-night image translation, following steps are performed. First, the proposed framework generates the night-time domain image by adjusting the brightness of the day-time image. As each scene element is segmented by the semantic annotations, the per-element translation is feasible; each scene element is translated individually. Thereby, adjustable translation can be performed for a more plausible result. Then, the feature extractions are performed, such as lane marking segmentation, coarse depth estimation, and light estimation. Here, the semantic annotations are used, specific scene elements are selected during the process. Consequently, unintentional translation and feature extractions are avoided. Moreover, our framework simulates the noises generated by the image sensor of the digital camera, as the night-time photographs are likely to be suffered from the sensor noises, in contrast to the day-time images. Accordingly, our contribution can be summarized as follow: a new semi-automatic framework that performs the day-to-night image translation of road scene images without learning for the translation, but utilizes the semantic annotations to not only avoid previous issues but also to generate a more plausible night-time image.
Chapter 2. Related Work

In this section, we briefly introduce the previous studies that have proposed learning-based method for day-to-night image translation

Isola et al. [7] proposed a learning-based framework that demonstrated results in many different image-to-image translation tasks. However, such a method requires a pair-wise dataset and the result of their day-to-night image translation did not well preserve the scene structure; difficult to observe as shown in Figure 1.

![Figure 1. Results of day-to-night image translation using the proposed method by Isola et al [7]. The image resolution is 256 x 256.](image-url)
Arruda et al. [12] proposed a method to generate a fake night-time domain dataset from the existing day-time domain dataset, using the CycleGAN [8]. The annotation process was unnecessary; the annotations from the day-time images are automatically transferred to the night-time image. However, artifacts in estimating the lightings in the night-scene are observable. Also, the input image is cropped and resized into low-resolution in order to overcome the high processing time of GAN. Figure 2 shows the example results of the proposed method [12].

Figure 2. Results of day-to-night image translation using the proposed method by Arruda et al [12]. The input resolution is 1280x720 and the output resolution is 256 x 256.
More recent studies attempt to preserve the structures in the image to prevent false translation. Huang et al. [14] proposed a method for the day-to-night image translation while being aware of structures in the image. By the supervision of the segmentation subtask, the encoder network is trained to extract image structure information. In contrast to previous studies, the proposed method generates more plausible results due to the structure-aware translation.

Similarly, Luan et al. [9] proposed a method for the photorealistic image style transfer using the Convolutional Neural Networks (CNN). With the photorealism regulation during the optimization and optional guidance using semantic segmentation, distortion during the image translation is well-prevented and the results were improved due to the awareness of the content in the image.

Most recently, Jiang et al. [16] proposed a learning-based method by considering not only a structure during the translation but also the style of translation from day to night: achieved a more plausible night-time image than previous approaches. Although, the images are scaled into a certain size and yet artifacts are observable in lightings like the previous approaches.
Chapter 3. Framework

In this chapter, we provide a detailed description of each step of our proposed framework. Here, we explain how the semantic annotations are utilized for the day-to-night image translation. Figure 3 shows an overview of our framework. The day-time image and semantic segmentation image are given as a pair-wise input. Given the input, we adjust brightness as per-element. Then, several feature extractions are performed to estimate coarse depth and lightings. The adjusted image and extracted features are synthesized into single image to generate a night-time image; the sensor noises are simulated over as the final result.

Figure 3. The overview of our framework.
As our framework utilizes the semantic annotations during the translation, the semantic annotation image is required along with the day–time image. For that reason, our framework uses the dataset that provides semantic segmentation images with annotations. For the experiments, the Cityscapes [20], KITTI [21], and BDD100K [22] datasets are selected. All 3 datasets provide pixel–level semantic segmentation images with the corresponding day–time road scene images. Unlike the other two datasets, BDD100K also includes the night–time images, but the semantic segmentation images are partially annotated, which makes difficult to use for night–to–day translation.

Datasets with the provision of semantic segmentation follow certain data formats for the annotations. Typically, the unique color code is assigned to each semantic label. Our framework follows the data format used by the Cityscapes dataset, as the KITTI and BDD100K dataset also follow the same data format. Thus, the preprocessing for aligning data format is unnecessary. Figure 4–15 show the example result of each step and features extracted during the translation. Here, the Cityscape dataset is used for the demonstration.

1. Brightness Adjustment

One of the major differences between the two domains is the sunlight. Due to the absence of the sunlight during the night, the night–time image is significantly darker in contrast to day–time image. Thus, as the first step of
our framework, we adjust the brightness of the day–time image to generate the night–time image.

To adjust the brightness, the image gets converted to HSV color space. Thereby, only the brightness value (V) of the color for each pixel in the image can be adjusted. Here, the framework performs the per–element adjustment, rather than adjusting the brightness of the image globally. This is due to the difference in the level of exposure between the two domains for each scene element. For example, the sky is one of the brightest areas in the day–time image, but it is also the darkest area in the night–time. Hence, the adjustment is performed locally, each scene element is adjusted individually to obtain a more plausible night–time image.

During the adjustment process, the amount of brightness to be reduced for each scene element is set. Instead of manually setting the value, we used the reflectance values of different materials. Here, the representative material for each semantic annotation is assigned; the corresponding reflectance values are used for the brightness adjustment. Table 1 summarizes the representative materials and the corresponding reflectance values that we have assigned for each semantic annotation. The reflectance values are set between the 0 to 1, which are applied to the brightness value of each image pixels.
<table>
<thead>
<tr>
<th>Representative Material</th>
<th>Reflectance Value</th>
<th>Semantic Category</th>
<th>Semantic Class / Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum [23]</td>
<td>0.7</td>
<td>Object</td>
<td>Traffic Sign, Traffic Light</td>
</tr>
<tr>
<td>Concrete [25]</td>
<td>0.3</td>
<td>Construction</td>
<td>Building, Wall, Fence, Guard Rail, Bridge, Tunnel</td>
</tr>
<tr>
<td>Human Skin [26, 27]</td>
<td>0.25</td>
<td>Human</td>
<td>Person, Rider</td>
</tr>
<tr>
<td>Vegetation [25, 28]</td>
<td>0.2</td>
<td>Nature</td>
<td>Vegetation, Terrain</td>
</tr>
<tr>
<td>Steel [24]</td>
<td>0.2</td>
<td>Object</td>
<td>Car, Truck, Bus, Caravan, Trailer, Train, Motorcycle, Bicycle</td>
</tr>
<tr>
<td>Lunar Albedo [29]</td>
<td>0.1</td>
<td>Sky</td>
<td>Sky</td>
</tr>
<tr>
<td>Asphalt [25, 30]</td>
<td>0.1</td>
<td>Flat</td>
<td>Road, Parking</td>
</tr>
</tbody>
</table>

Table 1. Representative materials and reflectance value for each classes and categories used in semantic segmentation.
For the ‘human’ category, including the ‘person’ and ‘rider’, the human skin is selected as the representative material. This is due to the variance in the appearance of humans, it is nearly impossible to define such appearances as a single material. Hence, the average reflectance value of different human skin colors is assigned for both ‘person’ and ‘rider’ label.

For the ‘sky’ label, the lunar albedo is selected as the representative material. This is due to that the sky cannot be represented as a certain material that has a surface to measure the reflectance value. Hence, the amount of radiation that is reflected by the moon is assigned as the reflectance value.

Unlike any other semantic labels, the ‘unlabeled’ label is assigned to the pixels where the scene objects are trivial or occluded by other scene objects. Thus, these group of objects cannot be represented as one, we set the reflectance value as an average of all other reflectance values.

The example result of our brightness adjustments is shown in Figure 4. The first row shows the day-time image to be adjusted. The second row shows the result of the night-time image, in which the brightness is adjusted globally with a 70 percent reduction. The result clearly shows that few scene elements yet remain bright to be considered as the night. The last row shows the result of the per-element brightness adjustment, which shows that our method can generate a more plausible night-time scene.
Figure 4. Example result of per-element brightness adjustment over day-time image. Our (c) method generates more a plausible night-time scene compared to the global adjustment method (b), which few scene elements yet remain bright in contrast to ours.
2. Coarse Depth Estimation

Depth of an image represent the distance of each pixel of scene element in the scene. In 3D rendering, the depth can be easily obtained and can be used for other techniques, such as shadow mapping or z-culling. However, obtaining a pixel-accurate level of depth from a single image is yet challenging. Hence, we estimate a coarse depth from the day-time image by utilizing the semantic segmentation and the characteristic of the given scene.

To estimate a coarse depth, our framework detects the vanishing point of the image and set as the furthest depth of the scene. The vanishing point is detected by perceiving the direction of the perspective and locating the position where it converges. Here, specific scene elements (i.e., road, lane markings, and vehicle) are only considered, as they well follow the perspective of the image, compared to others. The following steps describe the in-detail implementation of our depth estimation.

A. Lane Marking Segmentation

Prior to detect the vanishing point, the lane markings are segmented from the day-time image. To segment the lane markings from the image, the pixel contrasts are accumulated in the same horizontal space, as proposed by Batista et al. [31]. To avoid noises, we apply a Gaussian filter to blur the day-time image. Then we perform the segmentation only over the image pixels assigned as the ‘road’ semantic label to avoid unnecessary
computations. In addition to Batista et al., we also accumulate the pixel contrasts in vertical space to enhance the overall segmentation. Figure 5 shows the results of the lane markings segmentation process.

Figure 5. Example result of lane marking segmentation.
B. Edge Detection

To detect the vanishing point, first the edge detection is performed to obtain the shape of scene elements. The Canny edge detection [32] is performed over the semantic segmentation image rather than the day–time image. This is due to prevent the unnecessary edges being detected and also to detect edges only from selected scene elements (i.e., road and vehicle) as our purpose is to obtain the shape of objects and perceive the perspective.

In addition, the edges are also detected from the lane markings in the image. As the lane markings, in general, are aligned along to the road, this helps to perceive the scene more precisely and enhance the detection of the vanishing point.

The example result with a comparison between using the semantic segmentation image and the day–time image is shown in Figure 6. The result clearly shows that performing the edge detection over semantic segmentation image with the lane marking segments results in only the shape of scene elements while the unnecessary edges are all omitted. Such optimization further enhances the detection of the vanishing point, as the number of edges to consider is significantly reduced.
Figure 6. Example result (bottom row) of performing edge detection over the two different input (top row): (a) day–time image and the (b) selected semantic annotations, including the lane marking segments.
C. Line Detection

With the detected edges, the line detection is performed. The Hough transform [33] algorithm is applied, as it is well known for a line detection algorithm. Once the lines are detected, we further filter out the detected lines that are nearly horizontal or vertical. Also, the lines located in the outer boundary of the image is discard, as we assume that the vanishing point in the road scene image is located in the center. Figure 7 shows the example result of line detection over edge detection.

![Figure 7](image_url)

Figure 7. Example result of detect lines, which are drawn in green lines, over the detected edges, which are drawn in black lines.
D. Vanishing Point Detection

To obtain the vanishing point, we search for the location where the detected lines are mostly intersected, forming a convergence point. Thus, all the intersection points are computed between the detected lines, then we search for the largest point cluster among the all intersection points [34]. Afterward, we compute the average point of all points in the largest cluster, and set the average point as the vanishing point. The example result is shown in Figure 8.

Figure 8. The example result of vanishing point detection. The black lines represent the detected lines from the prior step. The red points are the intersection points, which are unqualified to be a point cluster. The green points are the points that belong to the largest point cluster among all the intersection points. The blue point is the average point of the green points, which is set to the vanishing point.
E. Coarse Depth Generation

Based on the detected vanishing point, finally the coarse depth is estimated. First, we set the vanishing point to the furthest depth, where the value is set to 0. The rest of the depth values are interpolated from the edge of the image, where the value is set to 1. Figure 9 shows the example depth estimated based on the detected vanishing point. The acquired coarse depth is utilized during the synthesizing process.

Figure 9. The example result of coarse depth generated based on the detected vanishing point, represented as blue point.
3. Light Map Generation

In this section, we describe how the light maps are generated by selecting specific semantic annotations and segmenting specific pixels from the day-time image.

Lightings is the other major difference that are easily recognizable between the two domains, similar to the brightness. Unlike day-time domain, the light sources during the night-time domain are exceedingly visible due to the absence of the sunlight. However, estimating the exact presence of the lights during the night-time domain based on the given day-time domain image is very challenging, simply due to the uncertainty. Thus, we utilize the semantic annotations to select specific scene elements to enhance our estimation process.

First, reflective scene elements (i.e. traffic sign) are selected. The image pixels belong to the selected elements are automatically added to the separate light map texture. Here, the segments of lane marking, that we acquired on previous step, are also added as they are well visible.

Afterward, the pixels that potentially belong to the strong light sources during the night are extracted. One of the common approaches to segment the light sources from the image is to compare the pixel values [35, 36]. In general, the RGB color space is converted to either HSV or CIELAB color space for better interpretation of the color.
Similar to the previous studies, our framework converts the day–time image into CIELAB color space and extracts light source by extracting certain color of pixels among selected scene elements (i.e. traffic light and vehicle). For instance, green, red, and yellow is searched in traffic lights while red and white is searched for the vehicle. Although such extraction process may be erroneous in the case of a vehicle, where the exterior color of vehicle may be same as the light source color, this remains as a challenge [37].

A. Bloom Effect

In the night–time photographs, the strong light source produces artifacts where the border of lights are extended, shows the glowing effect around. Such phenomenon is referred to as the diffraction in computer graphics and photography, often simplified as the 'bloom effect' in either rendering or game engines.

Similarly, our framework applies the bloom effect over the extracted light sources. In order to know the intensity of the light, which is unknown at the moment, we generate mipmap of texture which contains the extracted pixels. Then, the values are sampled from mipmapped texture as the intensity of the bloom effect, while the Gaussian filter is applied.
B. Random Light Splatting

Given the semantic annotations, the light sources from the specific scene elements (i.e., traffic lights or vehicles) are relatively easy to be estimated, as their shape, color, and locations are commonly known and expected. In contrast, lights from other scene elements (i.e., buildings) are almost impossible to be estimated by either shape, color, or location, as they are random. The recently proposed learning-based method also produces significant artifacts in estimating lights in the night-time domain [7, 12], yet it remains a challenge for a day-to-night image translation to accurately estimate lightings during the night. Thus, our framework randomly splats pre-rendered light sprites over the selected scene elements. To avoid light sprites being rendered over unintended locations (i.e. road or tree), we sample random position only with the area of selected scene elements (i.e., building).

Figure 10 shows the example result of selection of reflective scene element with estimated light sources by our framework.
Figure 10. Example result of light map generated by our framework, including selected reflective scene elements, extracted light sources with bloom effect, and randomly splatted light sprites.

4. Composition

Prior to the final step, our framework synthesizes the day–time image, adjusted image, coarse depth, and the light map into a single image. Given the adjusted image, where only the brightness is modified, the images and extracted features are composed together to generate a synthesized result. During this step, the coarse is depth is associated to generate a depth-aware night–time image. Figure 11 shows the example result of a synthesized image with extracted features.
Figure 11. Example result of synthetization of the adjusted image with extracted features, as shown in the middle and bottom rows.
5. Sensor Noise

Photographs taken with the digital cameras suffer from the sensor noises, due to the characteristic of the image sensor. These noises are mostly unnoticeable in the day-time images, when the scene is well illuminated. In contrast, noises are easily noticeable in the night-time images, due to lack of sunlight. Hence, we model the sensor noises that occur during the digital camera image processing pipeline to for more plausible result.

In this thesis, we model four different types of sensor noise in the digital camera image processing pipeline: photon shot noise, dark current shot noise, photo response non-uniformity (PRNU), and dark signal non-uniformity (DSNU). The four sensor noises we modeled in our framework can be categorized into two groups. The photon shot noise and the dark current shot noise can be grouped as random noise, and the PRNU and DSNU can be grouped into fixed pattern noise.

A. Random Noise

Random noises refer to the noises that are added to the final image, affected by the exposure time. Thus, the noise is random for every photograph taken. The photon shot noise occurs due to the photons randomly arrives at the image sensor, then captured into the photo-diodes. Thus, each photo-diodes capture different amount of light. To reduce the noise, shutter speed can be increased to reduce the gap between the photo-diodes.
However, the temperature of the image sensor rises as the exposure time increases, thermally generated electrons are additionally captured to the image sensor, which is referred as the dark current shot noise.

The photon shot noise is known to follow the Poisson distribution [38–40], thus we generate a random number of Poisson distribution for each image pixel to generate a noise texture. Here, the Poisson mean x_{psn} is set as the Equation 1 [39].

$$x_{psn} = \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} \int_{A} \int_{0}^{T} N(\lambda)QE(\lambda)d\lambda dA dT \quad (1)$$

The T denotes the exposure time, which is the shutter speed of the digital cameras. A denotes the area of each image pixel in the image sensor. QE stands for the quantum efficiency of the image sensor, we average the QE for all visible wavelengths, which is denoted as λ. The $N(\lambda)$ is the number of photons arrive at the image sensor per second, and it can be computed as the Equation 2 [39].

$$N(\lambda) = \frac{E(\lambda) \cdot \lambda}{h \cdot c} \quad (2)$$

The $E(\lambda)$ is the irradiance of the scene that reaches the image sensor plane, which can be modeled as Equation 3 [39]. $f\#$ denotes the effective focal length (EFL) and m denotes the magnification, in which the value can be
obtained from the specification of a lens. The \(L \) denotes the scene irradiance, which cannot be estimated from a single image and differs for time and space; a user-defined value is set.

\[
E(\lambda) = \pi L \frac{1}{1 + 4(f\#(1 + |m|))^2} \tag{3}
\]

Once the \(E(\lambda) \) is computed, the number of photons reaches the image sensor plane is computed by multiplying with the Planck–Einstein relation as shown in Equation 3, where the \(h \) is the Planck’s constant and \(c \) is the speed of light. Then, the Poisson mean for photon shot noise is obtained as Equation 1, the noise value for each pixel is computed as Equation 4.

\[
N_{psn} = Pois(x_p) \tag{4}
\]

Similar to the photon shot noise, dark current shot noise is also known to follow the Poisson distribution \([38–40]\). Similar to photon shot noise, the noise can be modeled as Equation 5. The \(x_{dsn} \) denotes the Poisson mean.

\[
N_{dsn} = Pois(x_{dsn}) \tag{5}
\]

Since the dark current shot noise is also affected by the exposure time, the Poisson mean is computed as the Equation 6. The \(T \) denotes the time, similar to the Equation 1. The \(d_{avg} \) denotes the average dark currents per second.
The device-specific parameters used in Equations 1–6 may unavailable to use. Thus, our framework refers to the device information provided by the dataset \([17, 18]\) and applies user-defined values as necessary.

B. Fixed Pattern Noise

Fixed pattern noises refer to the noises where the pattern is fixed for the image sensor. This is due to the imperfection of the image sensor during the manufacturing process, each photo-diode have variances. The PRNU occurs by the differences in the responsiveness of each photo-diode in the image sensor \([38–40]\). Hence, the number of captured photons will differ for each photo-diode, even if the same number of photons arrived for all pixels. The DSNU occurs due to the differences in dark current for each pixel in the image sensor \([38, 39]\).

Both PRNU and DSNU are known to follow the Gaussian distribution \([39, 40]\), hence we model as Equation 7 and 8 accordingly. The \(\sigma_{prnu}\) denotes the sensitivity of light and \(\sigma_{dsnlu}\) denotes the dark current of each photo-diode in the image sensor.

\[
N_{prnu} = N(0, \sigma_{prnu}^2) \quad (7)
\]
\[
N_{dsnlu} = N(0, T \cdot \sigma_{dsnlu}^2) \quad (8)
\]
C. Color Filter Array and Demosaicing

Most of the image sensors used in digital cameras are only sensitive to the intensity of the incoming light. Hence, a color filter array is used to filter the light into a specific pattern to capture the intensity of a specific color. This is referred to as the RAW data, in which each pixel only contains the intensity of certain patterns. To produce a fully colored image, the raw data must go through the demosaicing process, but the noises are generated prior to this step. Hence, our framework converts the night-time image into the RAW data, by only extracting specific color value, then apply the four noise models. Afterward, the raw data is converted back to night-time image, by performing demosaicing. Figure 12 shows the example result of RAW data conversion from the night-time image, using the Bayer pattern.

![Example result of image conversion from the (a) translated night-time image to the (b) RAW data, following the RGGB Bayer pattern.](image)

Figure 12. Example result of image conversion from the (a) translated night-time image to the (b) RAW data, following the RGGB Bayer pattern.
Bilinear interpolation is known as an efficient approach for demosaicing [41], but it produces visible artifacts, which are hardly shown in real photographs. Hence, edge-directed demosaicing [41, 42] is performed, which computes the direction of the nearby pixels to avoid distinct pixels being interpolated. Figure 13 shows the example results of the bilinear interpolation and the edge-directed algorithm applied to the raw image. The artifacts (zipper effect) are clearly shown in the bilinear interpolation method, while it is almost unobservable in the edge-directed method.

Figure 13. The comparison between the (a) bilinear interpolation method and (b) edge-directed method, where artifacts are easily comparable.
Finally, Figure 14 shows the comparison between the result with and without the sensor noises added. The level of noises shown in the result and insets are exaggerated for the visualization purpose.

![Example result of sensor noise applied over synthesized night-time image. The inset shows the comparison between the results (left) without the sensor noise and (right) with the sensor noise applied.](image)

Figure 14. Example result of sensor noise applied over synthesized night-time image. The inset shows the comparison between the results (left) without the sensor noise and (right) with the sensor noise applied.

D. GPU-based Pseudo Random Noise Generation

To compute a random number of certain distribution, a typical approach is to use pre-implemented code rather than implementing one. Using preimplemented libraries may be handy, the computation is mostly done on CPU-side. Generating noise texture requires multiple computations of the random number, such operation can easily hit the performance bottleneck. Thereby,
we attempted to compute the Poisson random number in GPU to overcome the performance bottleneck.

Instead of re-implementing the Poisson distribution algorithm from the scratch, we used the same code implemented in the Standard Template Library (STL) for the C++ programming language. Specifically, we used Microsoft's STL implementation as they are shared as open-source [43]. Although GPU does not provide a random number generator (RNG) without the usage of an external library (i.e., CUDA), we attempted to implement pseudo RNG in GPU.

Up-to-date GPU-based implementations of pseudo RNG that are publicly shared are only designed for a single-use. The most common approach is to use the texture coordinate as an input, the same random number is returned for the same texture coordinate. Such an issue can simply overcome by modifying the input during the computation of a random number; returned input can be reused for another random number. Moreover, random offset for each noise texture is given from the CPU-side for additional randomness.

To verify our GPU-based implementation of Poisson distribution with pseudo RNG, we compared ours with the CPU-based implementation. Figure 15 shows the example result of noise texture generated using the CPU-based and GPU-based Poisson distribution. Table 2 shows the measurement of the standard deviation of all pixel values in the noise texture, computed through a histogram. The differences in standard deviation between the CPU-based and GPU-based implementation were less than 0.02 for different Poisson means.
Figure 15. Comparison of noise texture generated using (a) CPU-based and (b) GPU-based implementation Poisson distribution.

Table 2. Comparison of the standard deviation of different Poisson means between CPU-based and GPU-based implementations. The values are the average of 1000 noise textures.

<table>
<thead>
<tr>
<th>Poisson Mean</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-based</td>
<td>25.52</td>
<td>8.06</td>
<td>2.56</td>
</tr>
<tr>
<td>GPU-based</td>
<td>25.55</td>
<td>8.08</td>
<td>2.57</td>
</tr>
</tbody>
</table>

Table 3 shows the performance measured for both CPU-based and GPU-based Poisson distribution in three different image resolutions. For the GPU-based method, the performance is measured for the draw call. For the CPU-based methods, the performance is measured only for the computations.
without texture generation. Here, we measured both for C++ and Python. For Python, we used the Numpy library as it is the most common way to generate a random number.

The measurements clearly show that the computation of our GPU-based Poisson distribution implementation takes about 2000 times faster than the CPU-based (C++) and about 5800 times faster than the CPU-based (Python).

Table 3. Performance comparisons between CPU-based (C++ and Python) and GPU-based implementation in different resolutions. Measured in milliseconds. (CPU: Intel i9, GPU: Nvidia GTX 1080 Ti)

<table>
<thead>
<tr>
<th></th>
<th>HD</th>
<th>FHD</th>
<th>QHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU-based</td>
<td>0.13 ms</td>
<td>0.29 ms</td>
<td>0.49 ms</td>
</tr>
<tr>
<td>CPU-based (C++)</td>
<td>263.99 ms</td>
<td>595.53 ms</td>
<td>1056.72 ms</td>
</tr>
<tr>
<td>CPU-based (Python)</td>
<td>763.87 ms</td>
<td>1691.62 ms</td>
<td>2972.63 ms</td>
</tr>
</tbody>
</table>
Chapter 4. Results

Experiments of the proposed framework in this thesis are performed on a machine with the Intel i9-7900X 3.31GHz and the Nvidia GTX 1080 Ti. To demonstrate the results of the proposed framework, Cityscapes, BDD100K and KITTI datasets were used. For comparison, the BDD100K dataset was used for the learning-based method [12]. For implementation, we selected C++ and the OpenGL Application Programming Interface.

The example results of 3 datasets are shown in Figure 16–18. For the demonstration, four different day–time road scene images from each dataset were selected, with corresponding ground truth semantic segmentation images. The demonstrated results show that our framework is feasible to perform day–to–night image translation of road scene images without the learning. The translation is resolution-independent and the results can be easily adjusted on-the-fly for more plausible results. Moreover, less artifacts are shown as the proposed framework do not performs unintended translation during the translation processes.

Figure 19 shows the comparison of results between the proposed framework and the learning-based method. The results clearly show that our framework can perform a more plausible day–to–night translation or road scenes with crisp results in higher-resolution, while the artifacts are yet observable in the compared method. Figure 20 shows a few detailed comparisons of results between the proposed framework and the learning–
based method. As shown in Figures 20(a), 20(b), 20(d) and 20(c), learning-based often detects bright area in the scene as a positive light source, while our results avoid such false estimations. However, as shown in Figures 20(e) and 20(f), learning-based method tends to do achieve plausible translation in building windows and street signs than our methods, such areas are not annotated in our semantic segmentation images. Additional to the qualitative evaluation as shown in Figures 19 and 20, we computed frechet inception distance (FID) \[44\] to further quantitatively evaluate the results between the proposed framework and the learning-based method. Though FID is originally designed to evaluate the results of GANs, our method may not fit. Also, the ground truth images, which are real night-time images of given day-time images, were cannot be obtained, thus we randomly selected multiple sets of real night-time images and computed the average FID. Table 4 shows the average FID: 5 different reference sets compared to our method and the learning method. Despite that our results produced fewer artifacts in lighting, and preserved the scene structures better than the results of the learning-based method, the FID was 13.57 lower than ours. This highly encourages us to further investigate improving the framework to achieve better FID; more discussed in the limitation section.

Table 5 shows the comparison of the average time measured for both the proposed framework and the learning-based method. The proposed framework shows a nearly real-time solution for a day-to-night translation. In contrast, the learning-based method, using the same dataset, shows 164 times slower performances. Such performances matter when it comes to generating a massive dataset. Table 6 shows the average performance
breakdown of the proposed framework for each step performed during the translation. The measurement was performed over three datasets, as shown in Figure 16–18. Since most steps in our framework operate on GPU-side, the overall performance for all steps are less than 3 milliseconds, except for the two: Hough transform and the light map generation.

The overheads in the proposed framework are mostly caused by the CPU-side operations, rather than the GPU-side operations. The CPU-side operations in the proposed framework include line detection, vanishing point detection, and random sampling of light sprite positions. All three overheads are simply caused by repeated processes: each operation requires multiple computations. Such overhead may be trivial for a low-resolution image, where fewer computations are required, but becomes significant for higher-resolution inputs. To prevent the framework to halt during the translation, each operation is limited by a certain number with given thresholds. In practice, such thresholds were never exceeded. The corresponding overheads can be seen in Table 5.
Figure 16. Experimental results of our framework using 4 different scenes from the Cityscapes dataset. The image resolution is 2048x1024.
Figure 17. Experimental results of our framework using Cityscapes dataset. The image resolution is 1280x720
Figure 18. Experimental results of our framework using Cityscapes dataset. The image resolution is 1242x375.
Figure 19. Comparison between results of our framework and the learning-based method [12], both using BDD100K dataset.

Table 4. The comparison of average frechet inception distance (FID) of our method and the learning-based using BDD100K dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>124.47</td>
</tr>
<tr>
<td>Arruda et al. [12]</td>
<td>110.90</td>
</tr>
</tbody>
</table>
Figure 20. In detail comparisons between the results of our method and the learning-based method, marked as yellow rectangle. Learning-based method tends to produce artifacts (a–d), while translates more plausible lightings in area like windows in building and street signs, which lacks in semantic segmentation annotation.
Table 5. The average time of our framework and the learning-based method as shown in Figure 16–19, measured in millisecond.

<table>
<thead>
<tr>
<th>Method/Dataset</th>
<th>Average time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours, Cityscapes (Figure 16), 2048x1024</td>
<td>21.83 ms</td>
</tr>
<tr>
<td>Ours, BDD100K (Figure 17), 1280x720</td>
<td>12.96 ms</td>
</tr>
<tr>
<td>Ours, KITTI (Figure 18), 1242x375</td>
<td>9.91 ms</td>
</tr>
<tr>
<td>Arruda et al. [12], BDD100K (Figure 19), 1280x720</td>
<td>2128.19 ms</td>
</tr>
</tbody>
</table>

Table 6. The average performance breakdown of each step in our framework measured in millisecond for each dataset.

<table>
<thead>
<tr>
<th>Step</th>
<th>Cityscapes (Figure 16) 2048x1024</th>
<th>BDD100K (Figure 17) 1280x720</th>
<th>KITTI (Figure 18) 1242x375</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing</td>
<td>0.08 ms</td>
<td>0.05 ms</td>
<td>0.03 ms</td>
</tr>
<tr>
<td>Brightness adjustment</td>
<td>0.06 ms</td>
<td>0.03 ms</td>
<td>0.02 ms</td>
</tr>
<tr>
<td>Lane segmentation</td>
<td>2.36 ms</td>
<td>0.46 ms</td>
<td>0.14 ms</td>
</tr>
<tr>
<td>Edge detection</td>
<td>0.62 ms</td>
<td>0.28 ms</td>
<td>0.17 ms</td>
</tr>
<tr>
<td>Hough transform</td>
<td>3.57 ms</td>
<td>2.92 ms</td>
<td>2.01 ms</td>
</tr>
<tr>
<td>Coarse depth estimation</td>
<td>0.17 ms</td>
<td>0.08 ms</td>
<td>0.05 ms</td>
</tr>
<tr>
<td>Light map generation</td>
<td>12.01 ms</td>
<td>7.92 ms</td>
<td>6.57 ms</td>
</tr>
<tr>
<td>Composition</td>
<td>0.37 ms</td>
<td>0.14 ms</td>
<td>0.08 ms</td>
</tr>
<tr>
<td>RAW conversion</td>
<td>0.28 ms</td>
<td>0.12 ms</td>
<td>0.07 ms</td>
</tr>
<tr>
<td>Sensor noise</td>
<td>1.44 ms</td>
<td>0.66 ms</td>
<td>0.36 ms</td>
</tr>
<tr>
<td>Demosaicing</td>
<td>0.83 ms</td>
<td>0.37 ms</td>
<td>0.21 ms</td>
</tr>
</tbody>
</table>
Chapter 5. Conclusion

In this thesis, the author presented a framework for the day-to-night image translation of the road scene images, using the semantic annotations from the semantic segmentation.

In contrast to previous learning-based methods, the proposed framework does not learn to translate the image in order to prevent previous issues where the desired dataset for the training becomes insufficient, and the outputs being unpredictable with artifacts. As our framework utilizes the semantic annotations, we were able to perceive the given scene, perform the per-element adjustment, and also extract features from the selected scene elements to synthesize a more plausible night-time image. Besides, the sensor noises were modeled to obtain even more plausible results.

As demonstrated in the results, the proposed framework successfully translated the day-time road scene image to the night-time image without learning. In contrast to learning-based methods, our framework preserved the input image resolution, which can further be resized for other potential usages. Thus, the crispness of scene structures was kept. Also, the artifacts were avoided by not performing unintended translation; visually plausible results were obtained. Moreover, the overall performance was improved by operating the most part of the framework in GPU, it shows viable extension for the application, such as massive dataset generation.
Chapter 6. Limitations and Future Work

As our framework utilizes the semantic annotations during the translation, the semantic segmentation is necessary for prior. Thus, the application of our framework is limited only to the image with the semantic segmentation. The annotating process is known to require time and manual effort, not every dataset provides one and may not be an optimal solution. In the future, we would like to further extend our framework to integrate a deep neural network (DNN) model of semantic segmentation. The state-of-the-art models [45, 46] show high performance in pixel-level semantic labeling, yet may have false labeling; further works are necessary.

Another limitation is the estimation of the coarse depth, which is based on the single vanishing point. The road scene can be complex, multiple vanishing points may exist in a single image. The proposed framework currently only detects a single vanishing point; the estimated coarse depth can be irrelevant for the images with multiple vanishing points. Hence, our future work includes further improvement to detect more than one vanishing point not only for a better estimation of depth but also to enhance overall feature extraction.

Also, the methods that the proposed framework uses to estimate the lightings are inaccurate. Our results lack optical effects (i.e. lens flare), only the diffraction-like effect was simply simulated by the bloom effect. Also, geometries of scene elements are unknown; it is difficult to add plausible light
reflection between the objects and the lights. Moreover, randomly splatted light sprites cause temporal incoherence between the frame to frame, where the positions of light sprites vary and not being continuous in the image sequence. As a consequence, further investigation is required for estimating and simulating lights in the night scene image; our future work includes the following issues. First, we will train the DNN semantic segmentation model (as mentioned earlier) with several additional labels (i.e. window, street lights, etc). Thereby, we segment the areas in the image where it could potentially be a light source during the night; we expect to achieve better estimations in lightings than randomly splatting the light sprite. Moreover, we will enhance our feature extractions to estimate coarse 3D geometries in the image to simulate better optical effects, such as point–light reflections. Overall, we seek that proposed framework to achieve both qualitatively and quantitatively improved than as current.

Additionally, our framework only performs day–to–night translation, cannot translate the night–time image to the day–time image. The proposed method may not be suitable for night–to–day image translation. Night–time images lack much information compared to the day–time image due to the lack of illumination. Such uneven conditions not only are difficult to obtain high–performance semantic segmentation but also hard to reproduce the original color of the scene or translate the overall lightings.

Lastly, we would like to further improve our framework by fully automating the entire processes, and extend our work to evaluate in deep learning tasks such as object detection.
References

[43] Microsoft. “Microsoft/STL.” GitHub, github.com/microsoft/STL.

논문요약

의미적 분할을 이용한 낮에서 밤으로 도로 환경 사진 변환 기법

Seung Youp Baek
소프트웨어학과
성균관대학교

Day-to-night 이미지 변환은 주어진 낮 시간대 영역(domain)의 사진을 밤 시간대 영역의 사진으로 변환하는 작업을 말한다. 최근 연구들은 낮 시간대의 도로 환경 데이터셋을 밤 시간대로 변환하는 학습 기반의 기법들을 소개하였고, 계속해서 발견된 결과들을 보여주었다. 그러나 학습 기반의 기법들은 일반적으로 예측이 불가능하기 때문에 원하는 결과를 얻기 어려운 경우가 많다. 또한, 원하는 주석(annotation)이 있는 데이터셋들은 사용하기에 불충분하거나 얻을 수 없을 수도 있다. 이에 본 연구는 도로 환경 사진에 day-to-night 이미지 변환 기법을 수행하는 반자동 프레임워크를 제안한다. 이전의 접근 방식과는 달리, 본 연구는 이미지 변환을 위해 학습을 하지 않는다. 대신해서 본 연구는 의미적 분할(semantic segmentation)로 얻는 의미적 주석(semantic annotation)들을 활용하여 주어진 환경을 이해한다. 의미적 주석의 활용으로, 사진 속 요소별 변환과 조절을 수행하여 더욱 실제 같은 밤 사진을 생성한다. 이어서, 사진 속 간단한 심도나 빛을 추정하는 데 있어 의미적 주석을 활용하여 의도하지 않은 변환을 피하고 전체적인 건고성을 높인다. 마지막으로, 이미지 센서 노이즈를 모델링하고 시뮬레이션하여 더욱 그립듯한 결과물을 얻는다. 결과적으로, 본 연구가 제시하는
프레임워크의 실험적 결과가 보여주듯이, 본 연구의 프레임워크는 더욱 그럴듯한 고해상도의 밤 사진을 생성할 뿐만 아니라, 학습 기반의 기법에서 나타나는 무작위 아티팩트들을 피한다. 게다가, 본 연구의 프레임워크는 대부분 GPU로 구동되기 때문에 결과를 실시간에 가깝게 얻을 수 있으며, 이는 데이터셋 생성을 위한 확장 가능성도 보여준다.

주제어: 영상 처리, 계산 사진학, 낮에서 밤, 의미적 분할, GPU
Master's Thesis

Road Scene Image Translation from Day to Night using Semantic Segmentation

2021

Seung Youp Baek