
Recursive Tessellation

Hyunjin Lee Yuna Jeong Sungkil Lee
Sungkyunkwan University∗

(b)

I
n

p
u

t

Height map

Model

T
e

s
s
e

lla
ti
o

n

T
e

s
s
e

lla
ti
o

n

T
ra

n
s
fo

rm
 

fe
e

d
b

a
c
k

Height map Surface

normal

(d)

Recursive tessellation

Ouput meshInput mesh

(a) (c)(c)(b)

Tessellation

Transform feedback

Figure 1: Overview of recursive tessellation (a). A coarse input mesh (b) is tessellated with initial displacement mapping (c), and is stored into
a transform-feedback buffer. Then, the tessellated mesh can be re-tessellated with another displacement map along its new normals (d). In this
way, recursive tessellation can represent high details beyond the typical limits of GPU even with multiple levels of displacement mapping.

1 Introduction

Tessellation shaders, available from the latest graphics processing
units (GPUs), are increasingly important in high-fidelity real-time
rendering. The tessellation shaders allow us to subdivide a coarse
input patch to tiny primitives with subdivision schemes such as Loop
subdivision [Loop 1987], Catmull-Clark subdivision [Catmull and
Clark 1978], and Phong tessellation [Boubekeur and Alexa 2008].
The tessellated geometries represent smoother surfaces, but also
their details can be enhanced with displacement mapping for on-
the-fly surface elevation. Each output vertex is relocated based on
the height information, which refines the geometric details such as
peaks, craters, terrain, and wrinkles.

Whereas the hardware tessellation is sufficiently fast even for high-
resolution outputs, the output resolution might not be enough for
high-resolution subdivision due to the hardware limits of maximal
tessellation factor; in the latest GPUs, the tessellation factor is lim-
ited up to 64. Hence, it is often necessary to pre-tessellate the input
mesh outside the GPU pipeline (i.e., offline or CPU processing),
resulting in less-structured or hard-to-manage systems.

2 Our Approach

In this paper, we present a novel tessellation scheme, which performs
the tessellation and transform feedback (or stream-out in DirectX) re-
cursively. The transform feedback enables us to store the tessellated
mesh without redundant rasterization overhead. As a result, this strat-
egy allows us to (virtually) infinitesimally subdivide a coarse mesh
by performing multi-stage tessellation, which can lead to extremely
detailed geometric representations. Also, the tessellated mesh can
be a cache for on-demand tessellation, which may vary by level of
details (LODs), and further serve as a fundamental building block
for highly dynamic adaptive LOD management.

Another important benefit of the recursive tessellation is the use of
multi-stage displacement mapping, which is not straightforward in a
single tessellation instance (e.g., tangential displacement against a
base plane or overhanging edges; see Figure 1 for example). With
respect to the new normals of the tessellated meshes, we can apply
another instance of displacement mapping recursively, which signifi-
cantly enhances high-frequency details against the initial elevation.

∗e-mail: {hyunjinlee, jeongyuna, sungkil}@skku.edu

3 Implementation and Performance

In conventional GPUs, the tessellation shaders are executed as addi-
tional stages after vertex-shader stage. The degrees of tessellation
are controlled in terms of internal and edge subdivision in the tes-
sellation control shader (TCS), and are passed to the tessellator in
which new child primitives are generated. Then, the new primitives
are transformed based on the attributes of their parent patches in the
tessellation evaluation shader (TES). In this TES stage, the displace-
ment of each new vertex can be applied using the offsets read from
an external texture. Finally, the tessellated and displaced primitives
are written in a transform-feedback buffer.

This combined operation of tessellation and transform feedback
is treated as a single instance at a recursion depth, and thus, can
be repeated to produce high-detail geometries. Meanwhile, we can
apply displacement mappings at different levels or from source
textures. Once the resolution of the buffer reaches the desired degree
of details, the recursion stops at the frame. For the next frames, we
can either more tessellate it or trace back to its lower-detail parent.

Finally, we report rendering performance of our recursive tessella-
tion, implemented on an Intel i7 machine with an NVIDIA GTX
680 at 1280×720. The framerates reached 2910, 2850, and 2820 fps
for meshes with 300K, 500K, and 1M triangles, respectively, which
were generally higher than the rendering without tessellation for the
same number of triangles.

Acknowledgements. This work was supported by the Basic Science, Mid-
career, and Global Frontier (on Human-centered Interaction for Coexistence)
R&D programs through NRF grants funded by the Korea Government (MSIP)
(Nos. 2011-0014015, 2012R1A2A2A01045719, and 2012M3A6A3055695).

References

BOUBEKEUR, T., AND ALEXA, M. 2008. Phong tessellation. In
ACM Transactions on Graphics (TOG), vol. 27, ACM, 141.

CATMULL, E., AND CLARK, J. 1978. Recursively generated b-
spline surfaces on arbitrary topological meshes. Computer-aided
design 10, 6, 350–355.

LOOP, C. 1987. Smooth subdivision surfaces based on triangles.


