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Abstract — Internet of things recently emerges as a 

common platform and service for consumer electronics. This 
paper presents an interactive framework of visualizing and 
authoring IoT in indoor environments such as home or small 
office. Building blocks of the framework are virtual sensors 
and actuators that abstract physical things and their virtual 
behaviors on top of their physical networks. Their behaviors 
are abstracted and programmed through visual authoring 
tools on the web, which allows a casual consumer to easily 
monitor and define their behaviors even without knowing the 
underlying physical connections. The user study performed to 
assess the usability of the visual authoring showed that the 
visual authoring is easy to use, understandable, and also 
preferred to typical text-based script programming1. 
 

Index Terms — Internet of things, visualization, authoring, 
sensor, actuator 

I. INTRODUCTION 
As modern devices and sensors continue to grow in power 

and functionality and to reduce in their cost, internet of things 
(IoT) emerges as a common platform and service for 
consumer electronics [1]. IoT enables to be connected to 
virtually unlimited devices over the internet. It thus has a great 
potential of communicating and interacting with them in 
synergistic and creative ways beyond the traditional services 
of isolated consumer electronics platforms. 

Recent advents made in IoT suggest creative ways to 
control and interact with things (sensors and actuators), which 
facilitates automated interactions in IoT environments [2], [3]. 
Sensors perform distributed sensing and are fused together to 
provide higher-level information from the raw data gathered 
from the physical world [4]. A user makes a decision on 
required actions, based on the salient significant information.  
The decision can then trigger appropriate actions on physical 
actuators or their abstractions. 

Functional mapping predefined between the things is 
crucial for effective interaction in smart IoT environments [5], 
[6]. Timely interactive control is often difficult even for the 
indoor environments where there are dozens of consumer-
level sensors and actuators. A key aspect is how to collect 
effective information from physical sensors and associate it 
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with physical actuators to fulfill desired high-level functions. 
In general, controlling individual things is not preferred. 
Intuitive actuation based on the salient information is 
preferred. For instance, “A human comes in, so turn on the 
lights in the living room.” is preferred to “When motion 
sensors whose IDs are 3 and 4 detect a velocity of > 10 cm/s 
in the room, turn the lights whose IDs are 1 and 2.” 
Hierarchical functional grouping is further helpful in creating 
heterogeneous complex behaviors across sensors and actuators. 

Visual authoring particularly well aids the functional 
mapping such that even casual consumers can easily create 
and monitor abstractions of their own devices or subsystems, 
and can appropriately respond significant events [7]. A 
programming like scripting is required for developers and 
manufacturers, but is often infeasible for the majority of IoT 
consumers. Real-time visual feedback with intuitive definition 
is likely to be better, which actually leverages the definition of 
mapping between things as the scripting does. This 
observation inspires exploration of visual authoring for IoT 
environments, which is not extensively studied in the past. 

This paper presents a web-based interactive framework that 
helps visualization and authoring of indoor IoT environments 
such as electronic sensors/devices and their systems in homes 
or small offices. Given a user’s hints on the indoor 
architecture, the framework loads one of the best matches of 
3D model templates. The indoor 3D scene is configured to 
selectively visualize attributes of available physical sensors 
and actuators. The system acts as a WYSIWYG (What you 
see is what you get) IoT editor, which allows a user to relate 
sensors and actuators interactively. The system further 
supports visual programming of virtual composite 
sensor/actuators, which defines their complex heterogeneous 
behaviors. The system was implemented on the WebGL 
(OpenGL ES on the web) for maximum portability and instant 
readiness across many different consumer electronics 
platforms. Finally, a user study was carried out to compare the 
task performance and usability of creating IoT definitions with 
and without visual feedback. 

II. RELATED WORK 
This section reviews the previous work on IoT frameworks, 

abstraction/virtualization of things, and their visualization and 
authoring. 

A. IoT Frameworks 
IoT devices are inherently heterogeneous and non-

standardized in their forms and interfaces, and thereby, recent 
attempts are focusing mostly on frameworks to bring about 



 

 
Fig. 1. An example overview of hierarchical abstraction of virtual sensors and actuators. Given the physical sensors and actuators, their hierarchical 
groupings make logical sensors/actuators. As a result, when the top-level virtual sensor (s7) detects a user’s wake-up event, the top-level virtual actuator 
(a9) triggers the actuations of the physical devices.  
 
standardization of IoT. Early sensor frameworks focused 
mainly on the connectivity protocols [8], sensor data 
interfaces [9], and remote sensing capability [10]. Recent 
open-source middle-wares commonly involve service and core 
(or base) layers, relying on web-based interfaces. Whereas the 
service layer regards high-level services such as data 
streaming and control, the core/base layer manages 
fundamental communication of IoT devices through high-
level extensible abstraction of sensors/actuators and their cost-
effective fusion [10] are of great interests, which still requires 
further efforts for the convergence. 

B. Data Fusion for Sensors and Actuators 
Physical IoT devices and their data, distributed in IoT 

environments, are usually abstracted or virtualized with data 
processing and filtering. The sensor data are transformed, 
processed for precise measurement [4], and fused to form soft 
sensor data. Likewise, actions of actuator devices are 
virtualized as an action group. Such abstraction, often dubbed 
as context-aware smart objects [11], not only provides better 
connectivity programming via middleware [10], [12], but also 
is used for deploying synergistic high-level services such as 
web or cloud server platforms [13], [14]. However, the 
majority of such approaches are focused for service designers 
and programmers rather than the consumer-level users. In 
contrast, the proposed framework builds on top of the 
middleware for the consumer electronics abstraction through 
more intuitive visual programming. 

C. Sensor Visualization and IoT Authoring 
There should be difficulties in visualizing IoT connected to 

plenty of devices, which spawns effective visualization [15]. 
The majority of previous work has focused solely on the 
visualization of spatial configuration and topology of sensors 
[16]. Early studies visualized sensor locations by overlaying 
them on the outdoor geographic or satellite maps [17], [18] or 
indoor 2D plans [16]. Their improvements have been made 
based on the type visualization [19] and level of details for 
distraction-free visualization [20]. 

IoT better manifests itself when it deals with context-driven 
events [5] and handles them with appropriate actions. Pre-
defined 2D graphical user interfaces (GUIs) [21] facilitated 
the authoring of a user who does not have knowledge of 
computer programming, but have been limited mostly in static 
scenarios. Dynamic behaviors were supported by scripting 

languages (e.g. Python) [22] or modular assembly [23]. They 
gained flexibility, but lost ease of programming to some 
extent. A high-level visual metaphor such as block puzzle [24] 
is better suited for consumer-level users, but limited only in 
small-scale environments. 

The previous studies were generally helpful in 
understanding the structural organization of sensor network, 
but have been limited in planar placements and authoring of 
static simple configurations. On the other hand, the proposed 
framework supports real-time dynamic 3D visualization with 
intuitive user interfaces within similar spatial frame of 
references, which enables to intuitively navigate, examine, 
and author things of interest. Further, the proposed approach 
is designed for flexible yet easy-to-make authoring of IoT 
environments, which bridges underlying scripting models for 
the IoT middleware and their subsystem owned by consumers 
through the visual programming. 

III. ABSTRACTION OF SENSORS AND ACTUATORS 
This section describes the design and definition of virtual 

things (including sensors and actuators) that can be seamlessly 
linked together for diverse functions in IoT environments. Fig. 
1 illustrates an overview of the design of abstracted things for 
an example of defining a wake-up event and its actuation. 

Conceptually, everything can be connected or grouped with 
other things. Physical things are first virtualized to interact 
with other virtual/logical things ({s1, s2, s3} and {a1, a2, a3} in 
the figure). Whereas the physical virtual sensors output 
numeric measurements, physical virtual actuators can trigger 
actions of corresponding physical devices. As for the virtual 
sensor, it is necessary to define a boolean outcome that 
indicates the occurrence of a particular event; for example, 
motion > 10 cm/s detects a moving human. Further 
hierarchical grouping enables to define complex events and 
their handlers. Eventually, pairing across a top-level sensor 
and actuator (s7 and a9) defines an event handler; here, the top-
level sensor needs to produce a boolean outcome. 

 

 
Fig. 2. Definition of virtual things. 



 

Every thing is defined as a node whose pseudocode-like 
definition is shown in Fig. 2. The definition includes common 
attributes of identity, name, type of the thing, type of 
visualization, position, children, and functional string of 
behavior. The type of thing distinguishes different types of 
sensors and actuators as well; its visual icon is defined by the 
type. The functional behavior of things is defined as a string 
that actually encodes script codes and evaluated at run time. 

Basic logical operations can be visually authored, and 
complex functions can be also script-programmed.  In 
particular for physical devices, their communications need to 
be coded here through native programming or scripts. What 
follows presents more details on virtual sensors and actuators. 

A. Virtual Sensors 
The primary role of virtual sensors is to detect non-trivial 

events in which a user might be interested. The majority of 
physical sensors expose only numeric values, which needs a 
user or system to interpret. The user interprets the implications 
of numeric values and write their outcome as a boolean value 
that indicates the occurrence of an event. Such interpretation 
is encoded in a Javascript object notation (JSON) format and 
evaluated on demand with ‘eval()’ in Javascript. 

In many cases, a high-level event usable for practical 
scenarios needs to aggregate outcomes of multiple sensors. It 
is possible to program complex behaviors in a single virtual 
sensor, but an easier way is to simply pick up pre-defined 
sensors and to hierarchically group them. Then, the boolean 
outcomes of the corresponding sensors are combined with 
logical operators to produce a single boolean outcome. 

B. Virtual Actuators 
Virtual actuators abstract the user-defined behaviors of 

physical actuators. They can be similarly abstracted as for 
virtual sensors so that they can trigger complex actions with 
occurrence of a single event. The hierarchical grouping can be 
based on a spatial or semantic proximity of actuators; e.g. 
grouping of all the light bulbs in the living room. The 
behavior can be also defined in a higher level; e.g. an 
“electricity saver” triggers to turn off all the redundant light 
bulbs in the living room and electronic devices and also levels 
up the temperatures of the refrigerator a bit higher. 

Unlike the sensors, the virtual actuators do not necessarily 
represent their values, since they are usually responsible only 
for triggering actions in physical devices. Nonetheless, an 
information visualizer can be also defined to support their 
monitoring; actually, this is another types of virtual sensor. 
For example, when the electricity is consumed more than 
normal amounts, electricity alert sensor can be displayed on 
the screen or broadcast messages. 

IV. INTERACTIVE IOT VISUALIZATION 
This section presents how virtual things are visualized in the 
indoor IoT environments to facilitate the interactive visual 
authoring detailed in Section V. 

A. Server and Clients for IoT Visualization 
The visualization and authoring tools are running on web-

enabled client applications, including web browsers or mobile 
web applications on consumer electronics. In order for the 
clients to query pre-defined or real-time measurements, a 
server, often called the IoT gateway [25], is required. Since 
resource-limited platforms are often provided, a light-weight 
server is preferred. Whereas direct communications between 
devices are often possible, the current framework here rely 
solely on the server to store additional information for 
visualization and authoring and to communicate with a 
representational state transfer (REST) interface. It is assumed 
that the IoT gateway already discovered the devices and holds 
their connectivity information. In addition, the server holds 
templates of indoor plans or their 3D models, the specification 
of physical things, and visual icons/representations. Such 
static information is queried in advance of running the client 
application, and measurements are queried asynchronously in 
run time. 

B. Layout and Spatial Configuration 
A 3D indoor environment is initialized with the given 3D 

models fetched from the server. When the very models of the 
user’s real environment are available, the environments and 
devices can be precisely designed. However, this is not often 
the case, because casual consumers should be able to easily 
3D-capture their housing (still challenging even with modern 
techniques). Hence, the proposed approach is to let a user 
select the best match among the available models from the 
server, based on the layout and size of the housing. In many 
cases, the layout of modern houses are fairly similar, making 
it a viable approach. 

 

 
Fig. 3. Top-view 3D visualization of an initial state of an IoT environment.  
Sensors and actuators are placed on top of the user-chosen 3D model. 

 
Unlike the housing itself, many of physical devices share 

the same form factors, and thus, pre-built models (can be 
provided by the device vendors) are enough for the current 
purpose. Given the static specification of physical IoT devices, 
they are first located arbitrarily in the scene. Since the models 
do not present actual location precisely, a user need to relocate 
them to fit with the real positions (see Fig. 3 for its top-view 
visualization); note that the accuracy of placements, 
nonetheless, does not affect those of high-level interaction of 
things. Then, the user’s placements are stored in the server so 



 

that they can be restored later. Unlike the previous 2D layout-
based approaches [21], the proposed framework supports 
interactive 3D navigation, enabling relatively easy placement 
of the models of consumer devices. 

Pure virtual (non-physical) sensors/actuators do not have 
their natural spatial locations, but locating them aside their 
child devices can still help a user control them easily. The 
other way is to locate them completely outside the viewport. If 
so, only logical things are arranged around the viewport, and 
the user can easily access the high-level functions. The choice 
of the pure virtual things depends upon the user’s preference. 

C. Visualization Scheme 
The indoor 3D plan is rendered like wire frames, which 

visualizes only significant edges in 3D structures. A two-pass 
rendering is used; geometric attributes of normal vectors and 
depth values of 3D surfaces are rendered in the first pass, and 
the second pass determines whether the pixels belong to edges. 
This is intended to emphasize the device configuration 
without visual clutter, where the exact color information 
matching the user’s housing is also unavailable. 

The visual icon of each node is displayed on the screen 
based on their 3D positions; here, an initial manual placement 
is necessary. The types of device nodes are distinguished by 
their colors and icons. The colors identify whether they are 
sensor or actuators; in the current implementation, red and 
blue for the sensors and actuators, respectively. The icon 
images differentiate the specific types of sensors and actuators. 
Virtual nodes not having their physical positions are placed in 
the periphery of the viewport. The layout is adaptively 
organized by the form factor of the display devices (i.e., 
whether it is displayed on the mobile devices or regular PCs). 

When selecting a node (via touch or mouse click), they 
enter the selection mode. Non-selected nodes are displayed 
translucently and the background is blurred out for better 
visibility of the selected node. The current states/values of the 
selected node are displayed beside the icon. When clicking the 
state text box, the page is redirected to another page that 
details the properties such as average values during the fixed 
period. The details (e.g. bar charts or scatter plots) are selected 
by the user according to the type of nodes. 

V. INTERACTIVE IOT AUTHORING 

A. Creating Virtual Nodes 
The proposed framework allows a user to create, edit, and 

delete a virtual node from the given physical nodes (sensors 
and actuators). The physical nodes are located by the server 
specification, and user can relocate to the desired positions. A 
single or multiple nodes can be selected by a long click and 
subsequent short clicks (see Fig. 4a). The selected sensors 
activate the buttons for editing, including creation, deletion, 
behavior editing, and done. By giving the name and type of 
the node, the user can simply create a virtual composite node 
(see Fig. 4b). 

 

Fig. 4. Multiple nodes (here, strong-blue actuators) selected by a user (a) 
can be grouped to form a new virtual node with its behavior definition. 

 

B. Behavior Definition 
Whereas the physical sensors output only numeric or 

boolean values, behaviors of virtual sensors define boolean 
outcome, which means the occurrence of a particular event. 
High-level events can be detected by processing multiple 
sensors; e.g. the fire event can be detected with the 
combination of a thermometer and smoke sensors. Complex 
behaviors can be also programmed by simple scripting 
languages; the proposed framework also supports such 
scripting. However, only for visual programming, a simple 
combination of boolean events without explicit scripting is 
much easier; when there is a user’s definition, this simple 
behavior is overridden. This is similar to modern web search 
engines that combine all the keywords to find a particular 
condition. The hierarchical graph for visual debugging helps 
to this end (see Fig. 5). 

 

 
Fig. 5. The hierarchical view visually summarizes sensors, actuators, and 
their mapping. 

 
Whereas the virtual sensors are focusing on the event 

detection, the virtual actuators are more related to high-level 
actions. For instance, when the fire event occurs, the 
appropriate actions include multiple steps such as calling to 
the fire station, shutting down the firewall, and sending alarms 
to the owners and neighbors. Each atomic action is grouped to 
higher-level actuators, and final hierarchical grouping defines 
a single high-level action. 

C. Event Handling 
Since the sensors and actuators are responsible for the event 

detection and its handling, they need to be linked to work in 
practice. Each virtual sensor has a link pointer to a particular 
actuator. Usually, a single top-level sensor is connected to a 
single top-level actuator to easily connect and edit the event 
handling. More complex mapping is obviously possible with 
the scripting, but the casual consumers can do similar 
mapping only with atomic visual events and handling. 



 

 
Fig. 6. Four scenarios used in the experiment. S1 is for the training session, and S2, S3, and S4 for the main experiment.

 

 
Fig. 7. Available nodes listed in the experiment. 

 

D. Visual Debugging 
The authoring results are likely to be complex when 

handling complex high-level events and actions, and thus, the 
support for its visual debugging will be highly helpful for the 
correct authoring. In the proposed framework, a user can 
obtain a hierarchical view of the whole authoring by clicking a 
debugging icon located on the top right. The hierarchical view 
summarizes and presents the authoring, context of nodes, and 
its mapping using a tree structure. The node is shown with 
their name, and children of the nodes and their linkage group 
are connected by lines (see Fig. 5). 

VI. EXPERIMENTAL EVALUATION 
This section reports a user study to experimentally assess 

the usability of the proposed framework for visual IoT 
authoring. 

A. Implementation Details 
The proposed system was implemented on a consumer-level 

server with 3.4 GHz CPU and 16 GB RAM, which serves all 
the information of the visualization and authoring including 
sensor/actuator specification, and definitions of virtual nodes 
in a database. The authoring and visualization were performed 
on web browsers. The rendering of the 3D environments used 
WebGL that is a web-driven abstraction of OpenGL ES. 
JavaScript was used as an application language, and the user 
interface used HTML5. 

The proposed framework did not install real physical 
sensors and actuators. The physical sensors were emulated by 

the server response for the client’s data request. The physical 
actuators were emulated by the logging of the action 
information on a web-based console. 

B. Methods 
1) Participants and Apparatus 

Twenty four undergraduate and graduate students (23 males 
and 1 female; 20-27 years old with average 24.2) participated 
in the experiment. Fourteen participants among them had prior 
experiences on scripting languages and their programming, 
and the other had no knowledge of script programming.  The 
participants used an 11-inch consumer-level touch-sensitive 
tablet (1.7 GHz CPU and 4 GB RAM), a keyboard, and a 
mouse for authoring. 

2) Stimuli 
Four example scenarios were used in the experiment (see 

Fig. 6). The four scenarios (S1-S4), with different indoor 
plans, evolved along with the complexity in terms of grouping 
and definitions. S1 among them was used solely for the 
training session, being excluded from result analysis. 

For all the scenarios, the definitions of physical sensors and 
actuators are given in advance to each session, also with high-
level verbal presentation. The participants were instructed to 
first author sensor definitions and actuator definitions 
separately, and to eventually define a mapping between the 
highest levels of sensor and actuator. 

 

 
Fig. 8. Examples of JSON definition. 

 
The output of the task used JSON definitions.  The set of 

JSON definitions of all the nodes were loaded in the 
framework, and tested with the authored configuration.  
Example excerpts are shown in Fig. 8. 



 

The debugging was supported in two types: the hierarchical 
graph of sensors and actuators; the console output printed on 
the screen as a web element. The test button was prepared on 
the screen and enforced particular events (with the pre-defined 
fixed behaviors) to confirm that the authored configuration 
works correctly. When the authoring is still wrong, the error 
messages are displayed on the console. 

3) Design and Procedure 
The experiment used one-factor within-subject design. The 

factor is the type of authoring, having two levels: text-based 
scripting and visual authoring with visual feedback of the 
proposed system. The text-based scripting used a web-based 
simple text editor, which enables to save and run the script. 
The output was displayed on the console. On the other hand, 
the visual authoring used a web browser as a visual editor. 

Each participant was first orally instructed with a 
descriptive document for the experimental procedure. The 
concepts of the IoT authoring were first explained, followed 
by distinctions between the text-based scripting and visual 
authoring. Then, the participant performs the training session 
on S1 to see how to perform the authoring and debugging. 
After one-minute break following the training session, the 
participant went through the six (2 authoring methods × 3 
scenarios) successive sessions with one-minute break after 
each session. The order of sessions was balanced using Latin 
squares to reduce leaning effects. Each session was continued 
until the sensors and actuators work correctly as desired, and 
the timing for completion was measured in seconds. After 
completing all the sessions, all the participants were asked to 
fill a subjective questionnaire on learnability, user friendliness, 
understandability, efficiency, preference, and free-form 
suggestions (see Table I). 

 
TABLE I 

SUBJECTIVE QUESTIONNAIRE RATED IN A 100-POINT SCALE, USED IN THE 
USER EXPERIMENT. 

No. Questions 

 Q1 How easily did you understand the method? 
 Q2 How easily did you perform the authoring task? 
 Q3 How easily did you understand the given information? 
 Q4 How efficiently did you perform the task as you want? 
 Q5 How much did you like the method? 
 

C. Results and Discussion 
The average task completion timings measured for each 

scenario are shown with standard errors in Fig. 9a. For all the 
scenarios, the visual authoring resulted in much less 
completion time than the text-based authoring (up to savings 
of 47 %). Analysis of variance (ANOVA), applied to see the 
statistical significances of the two authoring methods, also 
found significant differences in terms of p-values (<0.0001, 
0.0128, and <0.0001 for S1, S2, and S3, respectively). 

 

 
Fig. 9. Average measurements of the user experiment. 

 
The subjective ratings of the participants are plotted with 

standard errors in Fig. 9b. The proposed visual authoring 
elicited much positive responses than the text-based authoring 
in all the questions. This indicates that the visual authoring is 
apparently easy to learn (Q1), enhances usability in terms of 
user friendliness (Q2) and efficiency (Q4), the 3D 
visualization is more intuitive to understand information of 
IoT nodes (Q3), and the visual authoring is much preferred 
(Q5). The ANOVA again found the statistical significances of 
all the items; all the p-values were < 0.0001 except for Q3 (= 
0.0013). 

The experimental results showed that the visual authoring 
already has significant benefit over the conventional text-
based scripting in many aspects of IoT authoring. The major 
benefit stems from the easy visual identification of nodes and 
grouping, whereas the text-based editing shows a clear 
description but becomes harder with a complex hierarchy. The 
additional survey for improvements of the system revealed 
further potentials for better authoring interfaces. The major 
suggestions include: a better labeling of nodes; emphasis of 
newly created nodes; a better way to search the nodes; 
customized icons for each node. 

VII. CONCLUSION AND GENERAL DISCUSSIONS 
The visual feedback is one of the promising elements in 

creating and mediating effective user experiences in 
consumer-level IoT environments.  This paper presented the 
visualization and authoring frameworks based on web 
implementation, particularly focusing on indoor environments. 
The intuitive visualization and authoring metaphors allowed 
consumer users to easily define complex hierarchy of things 
and their automation. Virtual sensors and actuators served as a 
basis for constructing high-level IoT environments, 
decoupling from the low-level sensor/actuator networks. 

The user experiment was carried out to assess the usability 
of the framework. It revealed significant potentials of the 
visual authoring in many aspects. Whereas the text-based 
authoring facilitates the precise authoring in relatively simple 
environments, the visual authoring is better in terms of 
intuitive identification of complex IoT nodes. This nature led 
to significantly improved usability in many aspects. 

The framework is still a prototype and leaves rooms for 
further improvements. First, the structures of real 
environments are not exactly fitted to indoor 3D models that 
are selected from pre-defined templates. When the framework 
is combined with accurate modeling of the users’ real 



 

environments, the usability will be likely to be enhanced 
greatly. One of feasible future work includes inference of 3D 
models from 2D indoor plans. Second, specific 
implementations of the user interface affects the user 
experiences, and detailed comparison and refinements will be 
useful. Third, 3D visualization is not likely to be always 
effective for authoring. The effective combination with 2D 
visualization will lead to better authoring/visualization. Fourth, 
the visual icons of IoT nodes can be improved to reflect the 
context of the environments. For instance, emergency cases 
can be emphasized with a salient color of the node different 
from their surrounding neighbors.  
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