

AVIoT: Web-Based Interactive Authoring and
Visualization of Indoor Internet of Things

Yuna Jeong, Hyuntae Joo, Gyeonghwan Hong, Dongkun Shin, Member, IEEE, and Sungkil Lee

Abstract — Internet of things recently emerges as a

common platform and service for consumer electronics. This
paper presents an interactive framework of visualizing and
authoring IoT in indoor environments such as home or small
office. Building blocks of the framework are virtual sensors
and actuators that abstract physical things and their virtual
behaviors on top of their physical networks. Their behaviors
are abstracted and programmed through visual authoring
tools on the web, which allows a casual consumer to easily
monitor and define their behaviors even without knowing the
underlying physical connections. The user study performed to
assess the usability of the visual authoring showed that the
visual authoring is easy to use, understandable, and also
preferred to typical text-based script programming1.

Index Terms — Internet of things, visualization, authoring,
sensor, actuator

I. INTRODUCTION
As modern devices and sensors continue to grow in power

and functionality and to reduce in their cost, internet of things
(IoT) emerges as a common platform and service for
consumer electronics [1]. IoT enables to be connected to
virtually unlimited devices over the internet. It thus has a great
potential of communicating and interacting with them in
synergistic and creative ways beyond the traditional services
of isolated consumer electronics platforms.

Recent advents made in IoT suggest creative ways to
control and interact with things (sensors and actuators), which
facilitates automated interactions in IoT environments [2], [3].
Sensors perform distributed sensing and are fused together to
provide higher-level information from the raw data gathered
from the physical world [4]. A user makes a decision on
required actions, based on the salient significant information.
The decision can then trigger appropriate actions on physical
actuators or their abstractions.

Functional mapping predefined between the things is
crucial for effective interaction in smart IoT environments [5],
[6]. Timely interactive control is often difficult even for the
indoor environments where there are dozens of consumer-
level sensors and actuators. A key aspect is how to collect
effective information from physical sensors and associate it

1 This work was supported by Software R&D Center, Samsung Electronics
and the National Research Foundation of Korea under Grant Nos.
2012R1A2A2A01045719 and 2015R1A2A2A01003783.

Yuna Jeong, Hyuntae Joo, Gyeonghwan Hong, Dongkun Shin, and Sungkil
Lee are with College of Information and Communication Engineering,
Sungkyunkwan University, Suwon, Korea (e-mail: jeongyuna, htjoo, redc7328,
dongkun, sungkil@skku.edu).

with physical actuators to fulfill desired high-level functions.
In general, controlling individual things is not preferred.
Intuitive actuation based on the salient information is
preferred. For instance, “A human comes in, so turn on the
lights in the living room.” is preferred to “When motion
sensors whose IDs are 3 and 4 detect a velocity of > 10 cm/s
in the room, turn the lights whose IDs are 1 and 2.”
Hierarchical functional grouping is further helpful in creating
heterogeneous complex behaviors across sensors and actuators.

Visual authoring particularly well aids the functional
mapping such that even casual consumers can easily create
and monitor abstractions of their own devices or subsystems,
and can appropriately respond significant events [7]. A
programming like scripting is required for developers and
manufacturers, but is often infeasible for the majority of IoT
consumers. Real-time visual feedback with intuitive definition
is likely to be better, which actually leverages the definition of
mapping between things as the scripting does. This
observation inspires exploration of visual authoring for IoT
environments, which is not extensively studied in the past.

This paper presents a web-based interactive framework that
helps visualization and authoring of indoor IoT environments
such as electronic sensors/devices and their systems in homes
or small offices. Given a user’s hints on the indoor
architecture, the framework loads one of the best matches of
3D model templates. The indoor 3D scene is configured to
selectively visualize attributes of available physical sensors
and actuators. The system acts as a WYSIWYG (What you
see is what you get) IoT editor, which allows a user to relate
sensors and actuators interactively. The system further
supports visual programming of virtual composite
sensor/actuators, which defines their complex heterogeneous
behaviors. The system was implemented on the WebGL
(OpenGL ES on the web) for maximum portability and instant
readiness across many different consumer electronics
platforms. Finally, a user study was carried out to compare the
task performance and usability of creating IoT definitions with
and without visual feedback.

II. RELATED WORK
This section reviews the previous work on IoT frameworks,

abstraction/virtualization of things, and their visualization and
authoring.

A. IoT Frameworks
IoT devices are inherently heterogeneous and non-

standardized in their forms and interfaces, and thereby, recent
attempts are focusing mostly on frameworks to bring about

Fig. 1. An example overview of hierarchical abstraction of virtual sensors and actuators. Given the physical sensors and actuators, their hierarchical
groupings make logical sensors/actuators. As a result, when the top-level virtual sensor (s7) detects a user’s wake-up event, the top-level virtual actuator
(a9) triggers the actuations of the physical devices.

standardization of IoT. Early sensor frameworks focused
mainly on the connectivity protocols [8], sensor data
interfaces [9], and remote sensing capability [10]. Recent
open-source middle-wares commonly involve service and core
(or base) layers, relying on web-based interfaces. Whereas the
service layer regards high-level services such as data
streaming and control, the core/base layer manages
fundamental communication of IoT devices through high-
level extensible abstraction of sensors/actuators and their cost-
effective fusion [10] are of great interests, which still requires
further efforts for the convergence.

B. Data Fusion for Sensors and Actuators
Physical IoT devices and their data, distributed in IoT

environments, are usually abstracted or virtualized with data
processing and filtering. The sensor data are transformed,
processed for precise measurement [4], and fused to form soft
sensor data. Likewise, actions of actuator devices are
virtualized as an action group. Such abstraction, often dubbed
as context-aware smart objects [11], not only provides better
connectivity programming via middleware [10], [12], but also
is used for deploying synergistic high-level services such as
web or cloud server platforms [13], [14]. However, the
majority of such approaches are focused for service designers
and programmers rather than the consumer-level users. In
contrast, the proposed framework builds on top of the
middleware for the consumer electronics abstraction through
more intuitive visual programming.

C. Sensor Visualization and IoT Authoring
There should be difficulties in visualizing IoT connected to

plenty of devices, which spawns effective visualization [15].
The majority of previous work has focused solely on the
visualization of spatial configuration and topology of sensors
[16]. Early studies visualized sensor locations by overlaying
them on the outdoor geographic or satellite maps [17], [18] or
indoor 2D plans [16]. Their improvements have been made
based on the type visualization [19] and level of details for
distraction-free visualization [20].

IoT better manifests itself when it deals with context-driven
events [5] and handles them with appropriate actions. Pre-
defined 2D graphical user interfaces (GUIs) [21] facilitated
the authoring of a user who does not have knowledge of
computer programming, but have been limited mostly in static
scenarios. Dynamic behaviors were supported by scripting

languages (e.g. Python) [22] or modular assembly [23]. They
gained flexibility, but lost ease of programming to some
extent. A high-level visual metaphor such as block puzzle [24]
is better suited for consumer-level users, but limited only in
small-scale environments.

The previous studies were generally helpful in
understanding the structural organization of sensor network,
but have been limited in planar placements and authoring of
static simple configurations. On the other hand, the proposed
framework supports real-time dynamic 3D visualization with
intuitive user interfaces within similar spatial frame of
references, which enables to intuitively navigate, examine,
and author things of interest. Further, the proposed approach
is designed for flexible yet easy-to-make authoring of IoT
environments, which bridges underlying scripting models for
the IoT middleware and their subsystem owned by consumers
through the visual programming.

III. ABSTRACTION OF SENSORS AND ACTUATORS
This section describes the design and definition of virtual

things (including sensors and actuators) that can be seamlessly
linked together for diverse functions in IoT environments. Fig.
1 illustrates an overview of the design of abstracted things for
an example of defining a wake-up event and its actuation.

Conceptually, everything can be connected or grouped with
other things. Physical things are first virtualized to interact
with other virtual/logical things ({s1, s2, s3} and {a1, a2, a3} in
the figure). Whereas the physical virtual sensors output
numeric measurements, physical virtual actuators can trigger
actions of corresponding physical devices. As for the virtual
sensor, it is necessary to define a boolean outcome that
indicates the occurrence of a particular event; for example,
motion > 10 cm/s detects a moving human. Further
hierarchical grouping enables to define complex events and
their handlers. Eventually, pairing across a top-level sensor
and actuator (s7 and a9) defines an event handler; here, the top-
level sensor needs to produce a boolean outcome.

Fig. 2. Definition of virtual things.

Every thing is defined as a node whose pseudocode-like
definition is shown in Fig. 2. The definition includes common
attributes of identity, name, type of the thing, type of
visualization, position, children, and functional string of
behavior. The type of thing distinguishes different types of
sensors and actuators as well; its visual icon is defined by the
type. The functional behavior of things is defined as a string
that actually encodes script codes and evaluated at run time.

Basic logical operations can be visually authored, and
complex functions can be also script-programmed. In
particular for physical devices, their communications need to
be coded here through native programming or scripts. What
follows presents more details on virtual sensors and actuators.

A. Virtual Sensors
The primary role of virtual sensors is to detect non-trivial

events in which a user might be interested. The majority of
physical sensors expose only numeric values, which needs a
user or system to interpret. The user interprets the implications
of numeric values and write their outcome as a boolean value
that indicates the occurrence of an event. Such interpretation
is encoded in a Javascript object notation (JSON) format and
evaluated on demand with ‘eval()’ in Javascript.

In many cases, a high-level event usable for practical
scenarios needs to aggregate outcomes of multiple sensors. It
is possible to program complex behaviors in a single virtual
sensor, but an easier way is to simply pick up pre-defined
sensors and to hierarchically group them. Then, the boolean
outcomes of the corresponding sensors are combined with
logical operators to produce a single boolean outcome.

B. Virtual Actuators
Virtual actuators abstract the user-defined behaviors of

physical actuators. They can be similarly abstracted as for
virtual sensors so that they can trigger complex actions with
occurrence of a single event. The hierarchical grouping can be
based on a spatial or semantic proximity of actuators; e.g.
grouping of all the light bulbs in the living room. The
behavior can be also defined in a higher level; e.g. an
“electricity saver” triggers to turn off all the redundant light
bulbs in the living room and electronic devices and also levels
up the temperatures of the refrigerator a bit higher.

Unlike the sensors, the virtual actuators do not necessarily
represent their values, since they are usually responsible only
for triggering actions in physical devices. Nonetheless, an
information visualizer can be also defined to support their
monitoring; actually, this is another types of virtual sensor.
For example, when the electricity is consumed more than
normal amounts, electricity alert sensor can be displayed on
the screen or broadcast messages.

IV. INTERACTIVE IOT VISUALIZATION
This section presents how virtual things are visualized in the
indoor IoT environments to facilitate the interactive visual
authoring detailed in Section V.

A. Server and Clients for IoT Visualization
The visualization and authoring tools are running on web-

enabled client applications, including web browsers or mobile
web applications on consumer electronics. In order for the
clients to query pre-defined or real-time measurements, a
server, often called the IoT gateway [25], is required. Since
resource-limited platforms are often provided, a light-weight
server is preferred. Whereas direct communications between
devices are often possible, the current framework here rely
solely on the server to store additional information for
visualization and authoring and to communicate with a
representational state transfer (REST) interface. It is assumed
that the IoT gateway already discovered the devices and holds
their connectivity information. In addition, the server holds
templates of indoor plans or their 3D models, the specification
of physical things, and visual icons/representations. Such
static information is queried in advance of running the client
application, and measurements are queried asynchronously in
run time.

B. Layout and Spatial Configuration
A 3D indoor environment is initialized with the given 3D

models fetched from the server. When the very models of the
user’s real environment are available, the environments and
devices can be precisely designed. However, this is not often
the case, because casual consumers should be able to easily
3D-capture their housing (still challenging even with modern
techniques). Hence, the proposed approach is to let a user
select the best match among the available models from the
server, based on the layout and size of the housing. In many
cases, the layout of modern houses are fairly similar, making
it a viable approach.

Fig. 3. Top-view 3D visualization of an initial state of an IoT environment.
Sensors and actuators are placed on top of the user-chosen 3D model.

Unlike the housing itself, many of physical devices share

the same form factors, and thus, pre-built models (can be
provided by the device vendors) are enough for the current
purpose. Given the static specification of physical IoT devices,
they are first located arbitrarily in the scene. Since the models
do not present actual location precisely, a user need to relocate
them to fit with the real positions (see Fig. 3 for its top-view
visualization); note that the accuracy of placements,
nonetheless, does not affect those of high-level interaction of
things. Then, the user’s placements are stored in the server so

that they can be restored later. Unlike the previous 2D layout-
based approaches [21], the proposed framework supports
interactive 3D navigation, enabling relatively easy placement
of the models of consumer devices.

Pure virtual (non-physical) sensors/actuators do not have
their natural spatial locations, but locating them aside their
child devices can still help a user control them easily. The
other way is to locate them completely outside the viewport. If
so, only logical things are arranged around the viewport, and
the user can easily access the high-level functions. The choice
of the pure virtual things depends upon the user’s preference.

C. Visualization Scheme
The indoor 3D plan is rendered like wire frames, which

visualizes only significant edges in 3D structures. A two-pass
rendering is used; geometric attributes of normal vectors and
depth values of 3D surfaces are rendered in the first pass, and
the second pass determines whether the pixels belong to edges.
This is intended to emphasize the device configuration
without visual clutter, where the exact color information
matching the user’s housing is also unavailable.

The visual icon of each node is displayed on the screen
based on their 3D positions; here, an initial manual placement
is necessary. The types of device nodes are distinguished by
their colors and icons. The colors identify whether they are
sensor or actuators; in the current implementation, red and
blue for the sensors and actuators, respectively. The icon
images differentiate the specific types of sensors and actuators.
Virtual nodes not having their physical positions are placed in
the periphery of the viewport. The layout is adaptively
organized by the form factor of the display devices (i.e.,
whether it is displayed on the mobile devices or regular PCs).

When selecting a node (via touch or mouse click), they
enter the selection mode. Non-selected nodes are displayed
translucently and the background is blurred out for better
visibility of the selected node. The current states/values of the
selected node are displayed beside the icon. When clicking the
state text box, the page is redirected to another page that
details the properties such as average values during the fixed
period. The details (e.g. bar charts or scatter plots) are selected
by the user according to the type of nodes.

V. INTERACTIVE IOT AUTHORING

A. Creating Virtual Nodes
The proposed framework allows a user to create, edit, and

delete a virtual node from the given physical nodes (sensors
and actuators). The physical nodes are located by the server
specification, and user can relocate to the desired positions. A
single or multiple nodes can be selected by a long click and
subsequent short clicks (see Fig. 4a). The selected sensors
activate the buttons for editing, including creation, deletion,
behavior editing, and done. By giving the name and type of
the node, the user can simply create a virtual composite node
(see Fig. 4b).

Fig. 4. Multiple nodes (here, strong-blue actuators) selected by a user (a)
can be grouped to form a new virtual node with its behavior definition.

B. Behavior Definition
Whereas the physical sensors output only numeric or

boolean values, behaviors of virtual sensors define boolean
outcome, which means the occurrence of a particular event.
High-level events can be detected by processing multiple
sensors; e.g. the fire event can be detected with the
combination of a thermometer and smoke sensors. Complex
behaviors can be also programmed by simple scripting
languages; the proposed framework also supports such
scripting. However, only for visual programming, a simple
combination of boolean events without explicit scripting is
much easier; when there is a user’s definition, this simple
behavior is overridden. This is similar to modern web search
engines that combine all the keywords to find a particular
condition. The hierarchical graph for visual debugging helps
to this end (see Fig. 5).

Fig. 5. The hierarchical view visually summarizes sensors, actuators, and
their mapping.

Whereas the virtual sensors are focusing on the event

detection, the virtual actuators are more related to high-level
actions. For instance, when the fire event occurs, the
appropriate actions include multiple steps such as calling to
the fire station, shutting down the firewall, and sending alarms
to the owners and neighbors. Each atomic action is grouped to
higher-level actuators, and final hierarchical grouping defines
a single high-level action.

C. Event Handling
Since the sensors and actuators are responsible for the event

detection and its handling, they need to be linked to work in
practice. Each virtual sensor has a link pointer to a particular
actuator. Usually, a single top-level sensor is connected to a
single top-level actuator to easily connect and edit the event
handling. More complex mapping is obviously possible with
the scripting, but the casual consumers can do similar
mapping only with atomic visual events and handling.

Fig. 6. Four scenarios used in the experiment. S1 is for the training session, and S2, S3, and S4 for the main experiment.

Fig. 7. Available nodes listed in the experiment.

D. Visual Debugging
The authoring results are likely to be complex when

handling complex high-level events and actions, and thus, the
support for its visual debugging will be highly helpful for the
correct authoring. In the proposed framework, a user can
obtain a hierarchical view of the whole authoring by clicking a
debugging icon located on the top right. The hierarchical view
summarizes and presents the authoring, context of nodes, and
its mapping using a tree structure. The node is shown with
their name, and children of the nodes and their linkage group
are connected by lines (see Fig. 5).

VI. EXPERIMENTAL EVALUATION
This section reports a user study to experimentally assess

the usability of the proposed framework for visual IoT
authoring.

A. Implementation Details
The proposed system was implemented on a consumer-level

server with 3.4 GHz CPU and 16 GB RAM, which serves all
the information of the visualization and authoring including
sensor/actuator specification, and definitions of virtual nodes
in a database. The authoring and visualization were performed
on web browsers. The rendering of the 3D environments used
WebGL that is a web-driven abstraction of OpenGL ES.
JavaScript was used as an application language, and the user
interface used HTML5.

The proposed framework did not install real physical
sensors and actuators. The physical sensors were emulated by

the server response for the client’s data request. The physical
actuators were emulated by the logging of the action
information on a web-based console.

B. Methods
1) Participants and Apparatus

Twenty four undergraduate and graduate students (23 males
and 1 female; 20-27 years old with average 24.2) participated
in the experiment. Fourteen participants among them had prior
experiences on scripting languages and their programming,
and the other had no knowledge of script programming. The
participants used an 11-inch consumer-level touch-sensitive
tablet (1.7 GHz CPU and 4 GB RAM), a keyboard, and a
mouse for authoring.

2) Stimuli
Four example scenarios were used in the experiment (see

Fig. 6). The four scenarios (S1-S4), with different indoor
plans, evolved along with the complexity in terms of grouping
and definitions. S1 among them was used solely for the
training session, being excluded from result analysis.

For all the scenarios, the definitions of physical sensors and
actuators are given in advance to each session, also with high-
level verbal presentation. The participants were instructed to
first author sensor definitions and actuator definitions
separately, and to eventually define a mapping between the
highest levels of sensor and actuator.

Fig. 8. Examples of JSON definition.

The output of the task used JSON definitions. The set of

JSON definitions of all the nodes were loaded in the
framework, and tested with the authored configuration.
Example excerpts are shown in Fig. 8.

The debugging was supported in two types: the hierarchical
graph of sensors and actuators; the console output printed on
the screen as a web element. The test button was prepared on
the screen and enforced particular events (with the pre-defined
fixed behaviors) to confirm that the authored configuration
works correctly. When the authoring is still wrong, the error
messages are displayed on the console.

3) Design and Procedure
The experiment used one-factor within-subject design. The

factor is the type of authoring, having two levels: text-based
scripting and visual authoring with visual feedback of the
proposed system. The text-based scripting used a web-based
simple text editor, which enables to save and run the script.
The output was displayed on the console. On the other hand,
the visual authoring used a web browser as a visual editor.

Each participant was first orally instructed with a
descriptive document for the experimental procedure. The
concepts of the IoT authoring were first explained, followed
by distinctions between the text-based scripting and visual
authoring. Then, the participant performs the training session
on S1 to see how to perform the authoring and debugging.
After one-minute break following the training session, the
participant went through the six (2 authoring methods × 3
scenarios) successive sessions with one-minute break after
each session. The order of sessions was balanced using Latin
squares to reduce leaning effects. Each session was continued
until the sensors and actuators work correctly as desired, and
the timing for completion was measured in seconds. After
completing all the sessions, all the participants were asked to
fill a subjective questionnaire on learnability, user friendliness,
understandability, efficiency, preference, and free-form
suggestions (see Table I).

TABLE I

SUBJECTIVE QUESTIONNAIRE RATED IN A 100-POINT SCALE, USED IN THE
USER EXPERIMENT.

No. Questions

 Q1 How easily did you understand the method?
 Q2 How easily did you perform the authoring task?
 Q3 How easily did you understand the given information?
 Q4 How efficiently did you perform the task as you want?
 Q5 How much did you like the method?

C. Results and Discussion
The average task completion timings measured for each

scenario are shown with standard errors in Fig. 9a. For all the
scenarios, the visual authoring resulted in much less
completion time than the text-based authoring (up to savings
of 47 %). Analysis of variance (ANOVA), applied to see the
statistical significances of the two authoring methods, also
found significant differences in terms of p-values (<0.0001,
0.0128, and <0.0001 for S1, S2, and S3, respectively).

Fig. 9. Average measurements of the user experiment.

The subjective ratings of the participants are plotted with

standard errors in Fig. 9b. The proposed visual authoring
elicited much positive responses than the text-based authoring
in all the questions. This indicates that the visual authoring is
apparently easy to learn (Q1), enhances usability in terms of
user friendliness (Q2) and efficiency (Q4), the 3D
visualization is more intuitive to understand information of
IoT nodes (Q3), and the visual authoring is much preferred
(Q5). The ANOVA again found the statistical significances of
all the items; all the p-values were < 0.0001 except for Q3 (=
0.0013).

The experimental results showed that the visual authoring
already has significant benefit over the conventional text-
based scripting in many aspects of IoT authoring. The major
benefit stems from the easy visual identification of nodes and
grouping, whereas the text-based editing shows a clear
description but becomes harder with a complex hierarchy. The
additional survey for improvements of the system revealed
further potentials for better authoring interfaces. The major
suggestions include: a better labeling of nodes; emphasis of
newly created nodes; a better way to search the nodes;
customized icons for each node.

VII. CONCLUSION AND GENERAL DISCUSSIONS
The visual feedback is one of the promising elements in

creating and mediating effective user experiences in
consumer-level IoT environments. This paper presented the
visualization and authoring frameworks based on web
implementation, particularly focusing on indoor environments.
The intuitive visualization and authoring metaphors allowed
consumer users to easily define complex hierarchy of things
and their automation. Virtual sensors and actuators served as a
basis for constructing high-level IoT environments,
decoupling from the low-level sensor/actuator networks.

The user experiment was carried out to assess the usability
of the framework. It revealed significant potentials of the
visual authoring in many aspects. Whereas the text-based
authoring facilitates the precise authoring in relatively simple
environments, the visual authoring is better in terms of
intuitive identification of complex IoT nodes. This nature led
to significantly improved usability in many aspects.

The framework is still a prototype and leaves rooms for
further improvements. First, the structures of real
environments are not exactly fitted to indoor 3D models that
are selected from pre-defined templates. When the framework
is combined with accurate modeling of the users’ real

environments, the usability will be likely to be enhanced
greatly. One of feasible future work includes inference of 3D
models from 2D indoor plans. Second, specific
implementations of the user interface affects the user
experiences, and detailed comparison and refinements will be
useful. Third, 3D visualization is not likely to be always
effective for authoring. The effective combination with 2D
visualization will lead to better authoring/visualization. Fourth,
the visual icons of IoT nodes can be improved to reflect the
context of the environments. For instance, emergency cases
can be emphasized with a salient color of the node different
from their surrounding neighbors.

REFERENCES
[1] H. Kopetz,”Internet of things,” Real-time systems, Springer: USA, 2011,

pp. 307-323.
[2] P. Belimpasakis and R. Walsh, “A combined mixed reality and

networked home approach to improving user interaction with consumer
electronics,” IEEE Trans. Consumer Electron., vol. 57, no. 1, pp. 139-
144, Feb. 2011.

[3] D. Macagnano, G. Destino, and G. Abreu, “Indoor positioning: A key
enabling technology for IoT applications,” in Proc. IEEE World Forum
on Internet of Things, Seoul, Korea pp. 117-118, Mar. 2014.

[4] W. T. Sung and M. H. Tsai, “Data fusion of multi-sensor for IOT precise
measurement based on improved PSO algorithms,” Elsevier Computers
& Mathematics with Applications, vol. 64, no. 5, pp. 1450-1461, Sep.
2012.

[5] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414-454. Feb.
2014.

[6] Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long,
“Cognitive Internet of things: A new paradigm beyond connection,”
IEEE Internet of Things Journal, vol. 1, no. 2, pp. 129-143, Apr. 2014.

[7] A. R. Al-Ali, I. A. Zualkernan, A. Chreide, and H. Abu Ouda, “GRPS-
Based Distributed Home-Monitoring Using Internet-Based Geographical
Information System,” IEEE Trans. Consumer Electron., vol. 57, no. 4,
pp. 1688-1694, Nov. 2011.

[8] C. Suh and Y. B. Ko, “Design and implementation of intelligent home
control systems based on active sensor networks,” IEEE Trans.
Consumer Electron., vol. 54, no. 3, pp. 1177-1184. Aug. 2008.

[9] W. Brunette, M. Sundt, N. Dell, R. Chaudhri, N. Breit, and G. Borriello,
“Open data kit 2.0: expanding and refining information services for
developing regions.” in Proc. ACM Workshop on Mobile Computing
Systems and Applications, Georgia, USA, pp. 10, Feb. 2013.

[10] X. Zheng, D. E. Perry, and C. Julien, “BraceForce: a middleware to
enable sensing integration in mobile applications for novice
programmers,” in Proc. ACM International Conference on Mobile
Software Engineering and Systems, Hyderabad, India, pp. 8-17, Jun.
2014.

[11] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart
objects as building blocks for the internet of things,” IEEE Internet
Computing, vol. 14, no. 1, pp. 44-51, Feb. 2010.

[12] L. Hu, F. Wang, J. Zhou, and K. Zhao, “A Data Processing Middleware
Based on SOA for the Internet of Things,” Journal of Sensors, Article
ID 827045, Jan. 2015.

[13] D. Díaz-Sánchez, F. Almenarez, A. Marín, D. Proserpio, and P. A.
Cabarcos, “Media cloud: an open cloud computing middleware for
content management,” IEEE Trans. Consumer Electron., vol. 57, no. 2,
pp. 970-978, May. 2011.

[14] J. Yang, H. Park, Y. Kim, and J. K. Choi, “Programmable objectification
and Instance Hosting for IoT nodes,” in Proc. IEEE Asia-Pacific
Conference on Communications, Denpasar, Indonesia, pp. 603-608, Aug.
2013.

[15] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”
Elsevier Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-
1660, Sep. 2013.

[16] M. Simek, L. Mraz, and K. Oguchi, “SensMap: Web framework for
complex visualization of indoor & outdoor sensing systems” in Proc.
International Conference on Indoor Positioning and Indoor Navigation,
Montbeliard, France, pp. 1-5, Oct. 2013.

[17] K. A. Delin, “The Sensor Web: A macro-instrument for coordinated
sensing,” Sensors, 2nd ed., MDPI: Switzerland, 2002, pp.270-285.

[18] S. H. Liang, A. Croitoru, and C. V. Tao, “A distributed geospatial
infrastructure for Sensor Web,” Elsevier Computers & Geosciences, Vol.
31, no. 2, pp. 221-231, Mar. 2005.

[19] A. P. Castellani, M. Dissegna, N. Bui, and M. Zorzi, “WebIoT: A web
application framework for the internet of things,” in Proc. IEEE
Wireless Communications and Networking Conference Workshops, Paris,
France, pp. 202-207, Apr. 2012.

[20] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and M.
Parlange, “Sensorscope: Out-of-the-box environmental monitoring,” in
Proc. International Conference on Information Processing in Sensor
Networks, Missouri, USA, pp. 332-343, Apr. 2008.

[21] S. K. Datta, C. Bonnet, and N. Nikaein, “An iot gateway centric
architecture to provide novel m2m services,” in Proc. IEEE World
Forum on Internet of Things, Seoul, Korea, pp. 514-519, Mar. 2014.

[22] A. Azzara, D. Alessandrelli, S. Bocchino, M. Petracca, and P. Pagano,
“PyoT, a macroprogramming framework for the Internet of Things,” in
Proc. IEEE International Symposium on Industrial Embedded Systems,
Pisa, Italy, pp. 96-103, Jun. 2014.

[23] S. Gaur, N. Pereira, V. Gupta, and E. Tovar, “A Modular Programming
Approach for IoT-Based Wireless Sensor Networks,” in Proc.
International Conference on Embedded Wireless Systems and Networks,
Poster, pp. 3-4, Mar. 2015.

[24] M. Serna, C. J. Sreenan, and S. Fedor, “A visual programming
framework for wireless sensor networks in smart home applications,” in
Proc. IEEE International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, Singapore, pp. 1-6, Apr. 2015

[25] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “Iot gateway:
Bridgingwireless sensor networks into internet of things,” in Proc.
IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, Hong Kong, China, pp. 347-352, Dec. 2010.

BIOGRAPHIES

Yuna Jeong received the B.S. degree in computer
engineering at Korea Polytechnic University (2012). She
is a Ph.D. student in computer engineering at
Sungkyunkwan University. Her main research interest is
real-time rendering.

Hyuntae Joo received the B.S. degree in computer
software engineering at Kwangwoon University (2015).
He is a M.S. student in computer engineering at
Sungkyunkwan University. His main research interest is
physically-based real-time rendering.

Gyeonghwan Hong received the B.S. degree in
computer engineering from Sungkyunkwan University,
Korea in 2013. He is currently pursuing the Ph. D. degree
in Embedded Software Laboratory from Sungkyunkwan
University, Suwon, Korea. His research interests include
embedded software, mobile system software, Internet of
Things, and web platform.

Dongkun Shin (M’08) received the B.S. degree in
computer science and statistics, the M.S. degree in
computer science, and the Ph.D. degree in computer
science and engineering from Seoul National University,
Korea, in 1994, 2000, and 2004, respectively. He is
currently an associate professor in the Department of
Software engineering, Sungkyunkwan University

(SKKU). Before joining SKKU in 2007, he was a senior engineer of Samsung
Electronics Co., Korea. His research interests include embedded software,
low-power systems, computer architecture, and real-time systems. He is a
member of the IEEE.

Sungkil Lee received the B.S. and Ph.D. degrees in
materials science and engineering and computer science
and engineering at POSTECH, Korea, in 2002 and 2009,
respectively. He is currently an associate professor in the
Software Department at Sungkyunkwan University,
Korea. He was a postdoctoral researcher at the Max-
Planck-Institut Informatik (2009-2011). His research

interests include real-time GPU rendering, perception-based rendering,
information visualization, GPU algorithms, and human-computer interaction.

	I. Introduction
	II. Related Work
	A. IoT Frameworks
	A.
	B. Data Fusion for Sensors and Actuators
	C. Sensor Visualization and IoT Authoring

	III. Abstraction of Sensors and Actuators
	A. Virtual Sensors
	B. Virtual Actuators

	IV. Interactive IoT Visualization
	A. Server and Clients for IoT Visualization
	B. Layout and Spatial Configuration
	C. Visualization Scheme

	V. Interactive IoT Authoring
	A. Creating Virtual Nodes
	B. Behavior Definition
	C. Event Handling
	A.
	B.
	C.
	D. Visual Debugging

	VI. Experimental Evaluation
	A. Implementation Details
	B. Methods
	1) Participants and Apparatus
	2) Stimuli
	3) Design and Procedure

	C. Results and Discussion

	VII. Conclusion and General Discussions
	References

