

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

POTENTIALLY VISIBLE HIDDEN-VOLUME RENDERING FOR MULTI-VIEW WARPING

ACM TRANS. GRAPHICS, 42(4), 86

JANGHUN KIM AND SUNGKIL LEE*
SUNGKYUNKWAN UNIVERSITY, SOUTH KOREA

Novel-View Warping (in Real-Time Rendering)

• Single-image warping can introduce disocclusions (or holes), which are not rendered for the known view.

Known view

Novel view with disoccluions

Multi-Fragment Rendering (MFR)

- A-buffer, k-buffer, and Depth Peeling (DP)
 - typically used for transparency or global illumination
 - can handle disocclusions by including hidden fragments in warping.

Hidden layer 1

Hidden layer 2

Hidden layer 3

Redundancy of MFR

- Many of the fragments
 - are invisible from any novel views and
 - do not contribute to the final outcome.

Hidden Layer 1

Hidden Layer 2

Hidden Layer 3

Challenges

Reduction of redundancy in MFR and warping

- However,
 - In general, disocclusions are revealed after warping.
 - Also, multi-view warping even requires to be iterated.

Our Goal

- Early test of the visibilities for fragment culling in MFR
 - Capture fragments for the known views, but pre-test their visibilities against novel views.
 - in particular for Depth Peeling (DP)

Hidden layer 1

Hidden layer 2

Hidden layer 3

Previous Solutions

- Potentially Visible Set (PVS)
 - Offline visibility culling [Teller and Séquin 1991; Cohen-Or et al. 2003]
- Umbra fragment culling in Depth-of-Field (DOF) rendering
 - Based on pixel-as-geometry occluders [Lee et al. 2010]

Visibility preprocessing for interactive walkthroughs [Teller and Sequin 1991]

Real-Time Lens Blur Effects and Focus Control [Lee et al. 2010]

Our Contributions

- Potentially Visible Hidden Volume (PVHV)
 - Definition and modeling of PVHVs for MFR
 - PVHVs are 3D volumes that are hidden at the known source view but visible at novel views.
- Effective Depth Peeling (EDP) Algorithm
 - PVHV-based on-the-fly real-time fragment culling

Benefit of Our Solution

- Multi-view warping with EDP
 - produce fewer fragments/layers for the same quality
 - higher rendering performance
 - higher memory efficiency (packing from sparser fragments)

Potentially Visible Hidden Volumes (PVHVs)

Definition of PVHV:

• O_s : Hidden volume from s

Foreground

Hidden volume for known view

Definition of PVHV:

• V_n : Visible volume from n

Definition of PVHV:

• PVHV: $H_s(n) = O_s \cap V_n$

PVHVs for Linear Views

- The simplest shape of a PVHV
- Key elements for finding PVHV
 - inner blocker fragment f
 - two edge rays passing through f

Local Circle of Confusion (LCOC)

- PVHV is characterized by LCOC (——)
 - Similar to COC in DOF rendering
 - LCOC Radius from triangle similarity:

$$R(p,f) = \left(\frac{p_z - f_z}{f_z}\right) E$$

p: Incoming fragment to test

f: Inner blocker fragment

E: distance from s to n

Other Types of PVHV

It is possible to extend PVHVs to point and areal view types.

Effective Depth Peeling (EDP)

Depth Peeling

- Standard Depth Peeling (DP) [Everitt 2001]
 - captures all hidden fragments
- Our Effective Depth Peeling (EDP)
 - DP + PVHV-driven fragment culling

Problem for Efficient Implementation

Problem:

- PVHVs require to find edges.
- Finding edges explicitly needs to be avoided for efficiency.
- We just want to test edge exists (rather than where the edges are).

EDP: Backward-Search Algorithm

- Actually, we need f_Z for LCOC.
 - This needs precise edge detection.
- Assuming blocker is almost flat
 - blocker depth: $q_z \cong f_z$
- Search bound for finding edges
 - LCOC projection () onto blocker
 - When an edge exists, fragment p is in PVHV; p has be kept during DP.

Experimental Analysis

Test Configurations

- Experimental configurations
 - NVIDIA GTX 3090, Full-HD (1920×1080), OpenGL 4.6
 - Three camera-animated scenes (1.25M—242M faces, 2.2—36K objects)

Fragments in the First Hidden Layer

- Resulting fragments are already sparse
 - Most fragments behind large occluders are discarded well

Baseline DP [Everitt 2001]

Umbra DP [Lee et al. 2010]

Effective DP [DP+PVHV; ours]

Fragments: 0.994

Fragments: 0.915

Fragments: 0.392

Performance in Multi-View DOF Warping

- Speed-ups with respect to Standard DP (1024 views)
 - Ruins scene: 3.2-3.4×
 - Safari scene: 2.3-2.9×
 - Satellites scene: 2.4×

Memory Efficiency

- Packed EDP (PEDP)
 - GPU-based linked list, storing only sparse fragments, can greatly reduce the memory consumption.

Scene	<i>E</i> (mm)	Memory (MB)			Memory Efficiency		
		PEDP	EDP	UDP	PEDP	EDP	UDP
RU	50	17.7	316.4 (10)	316.4 (10)	37.5×	2.1×	2.1×
	100	26.5	379.7 (12)	379.7 (12)	25.1×	1.8×	1.8×
SF	50	16.4	221.5 (07)	316.4 (10)	61.6×	4.6×	3.2×
	100	20.5	316.4 (10)	379.7 (12)	49.5×	3.2×	2.7×
ST	50	9.1	94.9 (03)	94.9 (03)	166.1×	16.0×	16.0×
	1000	20.6	443.0 (14)	759.4 (24)	73.7×	3.4×	2.0×

Thank you for attention!